Evaluation of Fresh Groundwater Lens Volume and Its Possible Use in Nauru Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydraulic Tests
2.2. Geo-Electrical Investigation
2.3. 3D Numerical Model Implementation
3. Results
3.1. Freshwater Thikness in Capelle Area
3.2. Numerical Model Results
4. Discussion
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
CSM | Conceptual site model |
CNR | National research council |
EC | Electrical conductivity |
ERT | Electrical resistivity tomography |
RL | Reduced level |
RO | Reverse osmosis |
SP | Stress periods |
TDS | Total dissolved solids |
VES | Vertical electrical sounding |
References
- Sharan, A.; Lal, A.; Datta, B. A review of groundwater sustainability crisis in the Pacific Island countries: Challenges and solutions. J. Hydrol. 2021, 603, 127165. [Google Scholar] [CrossRef]
- Leoni, B.; Zanotti, C.; Nava, V.; Rotiroti, M.; Stefania, G.A.; Fallati, L.; Soler, V.; Fumagalli, L.; Savini, A.; Galli, P.; et al. Freshwater system of coral inhabited island: Availability and vulnerability (Magoodhoo Island of Faafu Atoll—Maldives). Sci. Total Environ. 2021, 785, 147313. [Google Scholar] [CrossRef]
- Eissa, M.A.; Thomas, J.M.; Pohll, G.; Shouakar-Stash, O.; Hershey, R.L.; Dawoud, M. Groundwater recharge and salinization in the arid coastal plain aquifer of the Wadi Watir delta, Sinai, Egypt. Appl. Geochem. 2016, 71, 48–62. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Ibrahim, M.N.M. Role of nanomaterials in the treatment of wastewater: A review. Water 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Balzan, M.V.; Potschin-Young, M.; Haines-Young, R. Island ecosystem services: Insights from a literature review on case-study island ecosystem services and future prospects. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2018, 14, 71–90. [Google Scholar] [CrossRef]
- White, I.; Falkland, T. Management of freshwater lenses on small Pacific islands. Hydrogeol. J. 2010, 18, 227–246. [Google Scholar] [CrossRef]
- Wheatcraft, S.W.; Buddemeier, R.W. Atoll Island Hydrology. Groundwater 1981, 19, 311–320. [Google Scholar] [CrossRef]
- Falkland, A.C.; Custodio, E.; Diaz Arenas, A.; Simler, L. Hydrology and Water Resources of Small Islands: A Practical Guide. In Studies and Reports in Hydrology; Unesco: Paris, France, 1991; Volume 49, ISBN 9231027530. [Google Scholar]
- Vacher, H.L.; Quinn, T.M. Geology and Hydrogeology of Carbonate Islands; Elsevier: Amsterdam, The Netherlands, 2004; Volume 54, ISBN 0-444-51644-1. [Google Scholar]
- Falkland, A.C. Hydrology and Water Management on Small Tropical Islands. 1993. Available online: https://iahs.info/uploads/dms/iahs_216_0263.pdf (accessed on 5 September 2022).
- Mastrocicco, M. Studies on water resources salinization along the Italian coast: 30 years of work. Acque Sotter.—Ital. J. Groundw. 2021, 10, 7–13. [Google Scholar] [CrossRef]
- Licata, I.L.; Langevin, C.D.; Dausman, A.M.; Alberti, L. Effect of tidal fluctuations on transient dispersion of simulated contaminant concentrations in coastal aquifers. Hydrogeol. J. 2011, 19, 1313–1322. [Google Scholar] [CrossRef]
- Mulligan, A.E.; Langevin, C.; Post, V.E. Tidal Boundary Conditions in SEAWAT. Ground Water 2011, 49, 866–879. [Google Scholar] [CrossRef]
- Buddemeier, R.W.; Oberdorfer, J.A. Internal Hydrology and Geochemistry of Coral Reefs and Atoll Islands: Key to Diagenetic Variations. In Reef Diagenesis; Schroeder, J.H., Purser, B.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 91–111. [Google Scholar]
- Alberti, L.; Licata, I.L.; Cantone, M. Saltwater Intrusion and Freshwater Storage in Sand Sediments along the Coastline: Hydrogeological Investigations and Groundwater Modeling of Nauru Island. Water 2017, 9, 788. [Google Scholar] [CrossRef] [Green Version]
- Nakada, S.; Umezawa, Y.; Taniguchi, M.; Yamano, H. Groundwater Dynamics of Fongafale Islet, Funafuti Atoll, Tuvalu. Ground Water 2012, 50, 639–644. [Google Scholar] [CrossRef]
- Gingerich, S.B.; Voss, C.I.; Johnson, A.G. Seawater-flooding events and impact on freshwater lenses of low-lying islands: Controlling factors, basic management and mitigation. J. Hydrol. 2017, 551, 676–688. [Google Scholar] [CrossRef]
- Werner, A.D.; Sharp, H.K.; Galvis, S.C.; Post, V.E.A.; Sinclair, P. Hydrogeology and management of freshwater lenses on atoll islands: Review of current knowledge and research needs. J. Hydrol. 2017, 551, 819–844. [Google Scholar] [CrossRef]
- Oberle, F.K.J.; Swarzenski, P.W.; Storlazzi, C.D. Atoll groundwater movement and its response to climatic and sea-level fluctuations. Water 2017, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Lentini, A.; De Caterini, G.; Cima, E.; Manni, R.; Ventura, G. Della Resilience toclimate change: Adaptation strategies for the water supply system of Formia and Gaeta (Province of Latina, Central Italy). Acque Sotter.—Ital. J. Groundw. 2021, 10, 35–46. [Google Scholar] [CrossRef]
- Karatzas, G.P.; Dokou, Z. Optimal management of saltwater intrusion in the coastal aquifer of Malia, Crete (Greece), using particle swarm optimization. Hydrogeol. J. 2015, 23, 1181–1194. [Google Scholar] [CrossRef]
- Thiéry, D. Saltwater Intrusion Modelling with an Efficient Multiphase Approach: Theory and Several Field Applications. In 18th Salt Water Intrusion Meeting: 18 SWIM; Instituto Geologico y Minero de España: Madrid, Spain, 2004. [Google Scholar]
- Colombo, L.; Alberti, L.; Mazzon, P.; Antelmi, M. Null-Space Monte Carlo Particle Backtracking to Identify Groundwater Tetrachloroethylene Sources. Front. Environ. Sci. 2020, 8, 142. [Google Scholar] [CrossRef]
- Antelmi, M.; Renoldi, F.; Alberti, L. Analytical and numerical methods for a preliminary assessment of the remediation time of pump and treat systems. Water 2020, 12, 2850. [Google Scholar] [CrossRef]
- Antelmi, M.; Mazzon, P.; Höhener, P.; Marchesi, M.; Alberti, L. Evaluation of mna in a chlorinated solvents-contaminated aquifer using reactive transport modeling coupled with isotopic fractionation analysis. Water 2021, 13, 2945. [Google Scholar] [CrossRef]
- Alberti, L.; Francani, V.; La Licata, I. Characterization of salt-water intrusion in the lower Esino Valley, Italy using a three-dimensional numerical model. Hydrogeol. J. 2009, 17, 1791–1804. [Google Scholar] [CrossRef]
- Underwood, M.R.; Peterson, F.L.; Clifford, I.V. Groundwater Lens Dynamics of Atoll Islands. Water Resour. Res. 1992, 28, 2889–2902. [Google Scholar] [CrossRef]
- Bailey, R.T.; Jenson, J.W.; Olsen, A.E. Numerical Modeling of Atoll Island Hydrogeology. Groundwater 2009, 47, 184–196. [Google Scholar] [CrossRef]
- Babu, R.; Park, N.; Yoon, S.; Kula, T. Sharp interface approach for regional andwell scale modeling of small island freshwater lens: Tongatapu island. Water 2018, 10, 1636. [Google Scholar] [CrossRef] [Green Version]
- Coulon, C.; Pryet, A.; Lemieux, J.M.; Yrro, B.J.F.; Bouchedda, A.; Gloaguen, E.; Comte, J.C.; Dupuis, J.C.; Banton, O. A framework for parameter estimation using sharp-interface seawater intrusion models. J. Hydrol. 2021, 600, 126509. [Google Scholar] [CrossRef]
- Coulon, C.; Lemieux, J.; Pryet, A.; Bayer, P.; Young, N.L.; Molson, J. Pumping Optimization under Uncertainty in an Island Freshwater Lens Using a Sharp-Interface Seawater Intrusion Model Water Resources Research. Water Resour. Res. 2022, 58, 1–18. [Google Scholar] [CrossRef]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. IPCC Climate Change 2001: The Scientific Basis; The Press Syndacate of the University of Cambridge: Cambridge, UK, 2001. [Google Scholar]
- Nurse, L.; Moore, R. Adaptation to Global Climate Change: An Urgent Requirement for Small Island Developing States. Rev. Eur. Community Int. Environ. Law 2005, 14, 100–107. [Google Scholar] [CrossRef]
- Birawida, A.B.; Ibrahim, E.; Mallongi, A.; Rasyidi, A.A.A.; Thamrin, Y.; Gunawan, N.A. Clean water supply vulnerability model for improving the quality of public health (environmental health perspective): A case in Spermonde islands, Makassar Indonesia. Gac. Sanit. 2021, 35, S601–S603. [Google Scholar] [CrossRef]
- Doorga, J.R.S. Climate change and the fate of small islands: The case of Mauritius. Environ. Sci. Policy 2022, 136, 282–290. [Google Scholar] [CrossRef]
- Boojhawon, A.; Surroop, D. Impact of climate change on vulnerability of freshwater resources: A case study of Mauritius. Environ. Dev. Sustain. 2021, 23, 195–223. [Google Scholar] [CrossRef]
- Falkland, A. Nauru Water Management Visit Report 28th Oct–1st Nov 2002; Ecowise Environmental; Australian Agency for International Development: Canberra, Australia, 2002; 48p. [Google Scholar]
- Nauru Project. Available online: http://nauru.como.polimi.it (accessed on 19 March 2022).
- Jacobson, G.; Hill, P.J. Hydogeology and groundwater resources of Nauru Island, Central Pacific Ocean. Groundwater 1988, 12, 85. [Google Scholar]
- Alberti, L.; Cantone, M.; Oberto, G.; Sampietro, D. GNSS Static Suvey Report. Published by Politecnico di Milano (DIIAR Department) for Nauru Project. Available online: http://nauru.como.polimi.it/activities-report-november-2010/gnss-nauru-survey-report-oct-2011 (accessed on 19 March 2022).
- Bouchet, L.; Sinclair, P. Assessing the Vulnerability of Shallow Domestic Wells in Nauru; SOPAC Technical Report 435; SOPAC Secretariat: South Orange, NJ, USA, 2010. [Google Scholar]
- Jacobson, G.; Hill, P.J.; Ghassemi, F. Geology and Hydrogeology of Nauru Island. In Geology and Hydrogeology of Carbonate Islands; Vacher, H.L., Quinn, T.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 707–742. ISBN 0444815201. [Google Scholar]
- Bouwer, H.; Rice, R.C. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour. Res. 1976, 12, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Neuman, S.P. Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response. Water Resour. Res. 1974, 10, 303–312. [Google Scholar] [CrossRef]
- Falkland, T. Water resources issues of small island developing states. Nat. Resour. Forum 1999, 23, 245–260. [Google Scholar] [CrossRef]
- Falkland, A.C. Vaipeka Water Gallery Extension Project, Aitutaki, Cook Islands; Australian Agency for International Development: Canberra, Australia, 1995. [Google Scholar]
- Harbaugh, A.W. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005; p. 253. [Google Scholar] [CrossRef] [Green Version]
- Langevin, C.D.; Guo, W. MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport. Ground Water 2006, 44, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, F.; Jakeman, A.J.; Jacobson, G.; Howard, K.W.F. Simulation of seawater intrusion with 2D and 3D models: Nauru Island case study. Hydrogeol. J. 1996, 4, 4–22. [Google Scholar] [CrossRef]
- Kim, Y.; Yoon, H.; Lee, S.H. Freshwater-salt water interface dynamics during pumping tests. Acque Sotter.—Ital. J. Groundw. 2019, 8, 35–39. [Google Scholar] [CrossRef]
Slug Test On | Depth (m) | Hydraulic Conductivity (m/d) |
---|---|---|
S18 | 10.2–13 | 0.4 |
S18 | 13.1–15 | 7.1 |
Near to S18 | 4.8–5.1 | 12.0 |
S1 | 6.7–7.7 | 3.5 |
S1 | 7.9–9.7 | 32.0 |
S1 | 9.8–11.2 | 12.6 |
S1 | 11.3–13.6 | 12.3 |
S1 | 13.8–15 | 30.0 |
S21 | 33.08–35.11 | 26.0 |
S21 | 35.11–36.98 | 42.5 |
S21 | 36.98–39.17 | 37.7 |
S21 | 39.17–46.08 | 14.0 |
Average value | 19.2 | |
Median value | 13.3 | |
Std. deviation | 13.8 |
Hydrogeological Parameter | Value | |
---|---|---|
Hydraulic conductivity (m/d)—horizontal and vertical | 800 for limestone (zone 1) 40 for sand (zone 1) | 80 for limestone (zone 1) 4 for sand (zone 1) |
Porosity | 0.3 | |
Specific storage (1/m) | 0.0003 | |
Specific yield | 0.3 | |
Longitudinal dispersivity (m) | 50 for limestone 2 for sand | |
Transverse dispersivity (m) | 5 for limestone 0.2 for sand | |
Vertical dispersivity (m) | 0.2 for limestone 0.008 for sand | |
Recharge (mm/y) | 540 | |
Molecular diffusion (m2/d) | 8.64 × 10−6 | |
Sea water TDS concentration | 35.7 kg/m3 |
Parameter | Minimum (l/d/pc) | Maximum (l/d/pc) | Average (l/d/pc) |
---|---|---|---|
Groundwater | 68 | 121 | 94 |
Drinkable water (desalination or rainwater) | 20 | 20 | 20 |
Total water needs | 88 | 141 | 114 |
Hydrogeological Parameter | Topside | Bottomside |
---|---|---|
Hydraulic conductivity (m/d) | 800 | 10–15 |
Effective porosity (-) | 0.02 | 0.15 |
Specific yield (-) | 0.02 | 0.15 |
Specific storage (1/m) | 1 × 10−5 | 3 × 10−4 |
Longitudinal dispersivity (m) | 80 | 2 |
Transverse dispersivity (m) | 5 | 0.2 |
Vertical dispersivity (m) | 0.2 | 0.008 |
Recharge (mm/year) | 590 | 657 |
Molecular diffusion (m2/d) | 8.64 × 10−6 | 8.64 × 10−6 |
Statistic | Value |
---|---|
Residual mean (kg/m3) | 1.34 |
Absolute residual mean (kg/m3) | 1.87 |
Residual standard deviation (kg/m3) | 1.94 |
RMSE | 1.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberti, L.; Antelmi, M.; Oberto, G.; La Licata, I.; Mazzon, P. Evaluation of Fresh Groundwater Lens Volume and Its Possible Use in Nauru Island. Water 2022, 14, 3201. https://doi.org/10.3390/w14203201
Alberti L, Antelmi M, Oberto G, La Licata I, Mazzon P. Evaluation of Fresh Groundwater Lens Volume and Its Possible Use in Nauru Island. Water. 2022; 14(20):3201. https://doi.org/10.3390/w14203201
Chicago/Turabian StyleAlberti, Luca, Matteo Antelmi, Gabriele Oberto, Ivana La Licata, and Pietro Mazzon. 2022. "Evaluation of Fresh Groundwater Lens Volume and Its Possible Use in Nauru Island" Water 14, no. 20: 3201. https://doi.org/10.3390/w14203201
APA StyleAlberti, L., Antelmi, M., Oberto, G., La Licata, I., & Mazzon, P. (2022). Evaluation of Fresh Groundwater Lens Volume and Its Possible Use in Nauru Island. Water, 14(20), 3201. https://doi.org/10.3390/w14203201