Groundwater Quality for Irrigation Purposes in the Diass Horst System in Senegal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Water Quality for Irrigation Purposes (Water Indices)
3. Results and Discussions
3.1. General Characterization of the Aquifer Waters
3.2. Suitability of the Aquifer Water for Irrigation Purposes
3.2.1. Electrical Conductivity (EC)
3.2.2. Sodium Absorption Ratio (SAR)
3.2.3. USSL Diagram
3.2.4. Percentage of Sodium (Na%)
3.2.5. Salinity Potential (SP)
3.2.6. The Kelly Ratio (KR)
3.2.7. Permeability Index (PI)
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW): Managing Systems at Risk; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011; 48p. [Google Scholar]
- FAO. The Role of Livestock in Food Security, Poverty Reduction and Wealth Creation in West Africa; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020; 237p, ISBN 978-92-5-132339-7. [Google Scholar]
- Tao, Y.; Li, J.; Feng, K.W. Analysis of the guarantee degree of irrigation water resources and its spatial difference in Shaanxi Province. Chin. J. Agric. Resour. Reg. Plan. 2018, 39, 97–104. [Google Scholar]
- Xu, P.; Feng, W.; Qian, H.; Zhang, Q. Hydrogeochemical Characterization and Irrigation Quality Assessment of Shallow Groundwater in the Central-Western Guanzhong Basin, China. Int. J. Environ. Res. Public Health 2019, 16, 1492. [Google Scholar] [CrossRef]
- Eissa, M.A.; de Dreuzy, J.-R.; Parker, B. Integrative management of saltwater intrusion in poorly-constrained semi-arid coastal aquifer at Ras El-Hekma, Northwestern Coast, Egypt. Groundw. Sustain. Dev. 2018, 6, 57–70. [Google Scholar] [CrossRef]
- Batarseh, M.; Imreizeeq, E.; Tilev, S.; Al Alaween, M.; Suleiman, W.; Al Remeithi, A.M.; Al Tamimi, M.K.; Al Alawneh, M. Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundw. Sustain. Dev. 2021, 14, 100611. [Google Scholar] [CrossRef]
- Morris, B.L.; Lawrence, A.R.L.; Chilton, P.J.C.; Adams, B.; Calow, R.C.; Klinck, B.A. Groundwater and Its Susceptibility to Degradation: A Global Assessment of the Problem and Options for Management; Early Warning and Assessment Report Series 03–3; United Nations Environment Programme: Nairobi, Kenya, 2003; p. 126. Available online: http://nora.nerc.ac.uk/id/eprint/19395/1/Groundwater_INC_cover.pdf (accessed on 22 November 2018).
- Wu, J.; Wang, L.; Wang, S.; Tian, R.; Xue, C.; Feng, W.; Li, Y. Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation, northwest China. Environ. Earth Sci. 2017, 76, 460. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 2018, 77, 273. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mondal, T.M.A. Assessment of groundwater pollution and its impact on soil properties along with plant growth. Bangladesh. J. Agric. Sci. 2015, 34, 39–42. [Google Scholar]
- Martin, A. Les Nappes de la Presqu’île du Cap-Vert: Leur Utilisation pour L’alimentation en Eau de Dakar; BRGM: Paris, France, 1970; 56p.
- Madioune, D.H.; Faye, S.; Orban, P.; Brouyère, S.; Dassargues, A.; Mudry, J.; Stumpp, C.; Maloszewski, P. Application of isotopic tracers as a tool for understanding hydraulic behavior for the highly exploited Diass aquifer system. J. Hydrol. 2014, 511, 443–459. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci. 1947, 64, 432. [Google Scholar] [CrossRef]
- Wilcox, L.V. Classification and Use of Irrigation Waters; US Department of Agriculture ADC: Washington, DC, USA, 1955; p. 969.
- Shahid, S.A. Developments in Salinity Assessment, Modeling, Mapping, and Monitoring from Regional to Submicroscopic Scales. In Developments in Soil Salinity Assessment and Reclamation—Innovative Thinking and Use of Marginal Soil and Water Resources in Irrigated Agriculture; Shahid, S.A., Abdelfattah, M.A., Taha, F.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 3–43. [Google Scholar]
- Franklin, W.T.; Follett, R.H. Crop Tolerance to Soil Salinity; No. 505. Service in Action; Colorado State University Extension Service: Fort Collins, CO, USA, 1985. [Google Scholar]
- Udom, E.; Ekpo, A.; Oluka, S. Assessment of irrigation water qualities of Abak River, Abak, Akwa Ibom State, Nigeria. Glob. J. Pure Appl. Sci. 2019, 25, 135–144. [Google Scholar] [CrossRef]
- Shahid, S.A.; Rahman, K.R. Soil salinity development, classification, assessment and management in irrigated agriculture. In Handbook of Plant and Crop Stress; Passarakli, M., Ed.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2011; pp. 23–39. [Google Scholar]
- Edelstein, M.; Plaut, Z.; Ben-Hur, M. Water salinity and sodicity effects on soil structure and hydraulic properties. Adv. Hortic. Sci. 2010, 24, 154–160. [Google Scholar]
- Pagliai, M.; Vignozzi, N. Soil porosity as an indicator of soil health. Ann. Arid Zone 2006, 45, 259–286. [Google Scholar]
- Singh, V.; Singh, U.C. Assessment of groundwater quality of parts of Gwalior (India) for agricultural purposes. Indian J. Sci. Technol. 2008, 1, 1–5. [Google Scholar] [CrossRef]
- Joshi, D.M.; Kumar, A.; Agrawal, N. Assessment of the Irrigation Water Quality of River Ganga in Haridwar District. Indian J. Chem. 2009, 2, 285–291. [Google Scholar]
- Khan, T.A.; Abbasi, M.A. Synthesis of parameters used to check the suitability of water for irrigation purposes. Int. J. Environ. Sci. 2013, 3, 2031–2038. [Google Scholar]
- Lloyd, J.W.; Heathcote, J.A. Natural Inorganic Hydrochemistry in Relation to Groundwater; Clarendon: Oxford, UK, 1985; p. 294. [Google Scholar]
- Thorne, D.W.; Peterson, H.B. Irrigated Soils; Constable and Company Limited London: London, UK, 1954; p. 113. [Google Scholar] [CrossRef]
- Essouli, O.F.; Gladima-Siby, A.S.; Diouf, O.C.; Faye, A. The continental terminal aquifer in Sine Saloum: Chemical quality and irrigation impact. J. Sci. Technol. 2008, 6, 58–67. [Google Scholar]
- Bradaï, A.; Douaoui, A.; Marlet, S. Qualité des eaux souterraines utilisées en irrigation et risques de dégradation des sols dans la plaine du Bas-Cheliff, Algérie. In Proceedings of the Actes du Quatrième Atelier Régional du Projet Sirma, Mostaganem, Algeria, 26–28 May 2008; Cirad: Montpellier, France, 2008. [Google Scholar]
- Ravikumar, P.; Somashekar, R.K.; Angami, M. Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environ. Monit. Assess. 2010, 173, 459–487. [Google Scholar] [CrossRef] [PubMed]
- Gouidia, L.; Guefaifia, O.; Boudoukha, A.; Hemila, M.L. Evaluation de la salinité des eaux souterraines utilisées en irrigation et risques de dégradation des sols: Exemple de la plaine de Meskiana, nord-est algérien. Geo. Eco. Trop. 2013, 37, 141–160. [Google Scholar] [CrossRef]
- Orou, R.K.; Soro, G.; Soro, D.T.; Traoré, A.; Fossou, R.M.N.; Soro, N. Aptitudes À L’agriculture Des Eaux Souterraines Du Departement d’Agboville (Sud-Est De La Côte d’Ivoire). Eur. Sci. J. ESJ 2016, 12, 1857–7881. [Google Scholar] [CrossRef]
- Ogunfowokan, A.O.; Ogunkoya, O.O.; Obisanya, J.F. Salinity and sodium hazards of three streams of different agricultural land use systems in Ile-Ife, Nigeria. Appl. Water Sci. 2013, 3, 19–28. [Google Scholar] [CrossRef]
- Yahong, Z.; Peiyue, L.; Leilei, X.; Zihan, D.; Duo, L. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry 2020, 80, 125609. [Google Scholar] [CrossRef]
- Xia, C.; Liu, G.; Xia, H.; Jiang, F.; Meng, Y. Influence of saline intrusion on the wetland ecosystem revealed by isotopic and hydrochemical indicators in the Yellow River Delta, China. Ecol. Indic. 2021, 133, 108422. [Google Scholar] [CrossRef]
- USAID. Cartographie et Télédétection des Ressources de la République du Sénégal. Etude de la Géologie, de L’hydrologie, des Sols, de la Végétation et des Potentiels D’utilisation des Sols; SDSU-RSI-86-01 Direction de l’Aménagement du Territoire; Agency for International Development, Remote Sensing Institute; USAID: Washington, DC, USA, 1986; 653p.
- Faye, A. Contribution à L’étude Géologique et Hydrogéologique du Horst de Diass et de Ses Environs (Sénégal). Ph.D. Thesis, Université de Dakar, Dakar, Senegal, 1983; 175p. [Google Scholar]
- Bellion, Y.J.C. Historique Géodynamique Post-Paléozoïque de L’Afrique de L’ouest D’après L’étude de Quelques Bassins Sédimentaires (Sénégal, Taoudenni, Iullemmeden, Tchad). Ph.D. Thesis, Université d’Avignon, Paris, France, 1987; 302p. [Google Scholar]
- Travi, Y. Hydrochimie et Hydrologie Isotopique des Aquifères Fluorurés du Bassin du Sénégal, Origine et Conditions de Transport du Fluor dans Les Eaux Souterraines. Ph.D. Thesis, Université de Paris Sud, Centre d’Orsay, Orsay, France, 1988; 10p. [Google Scholar]
- Gladima-Siby, A.S. Utilisation des Méthodes Géophysiques pour la Caractérisation de la Nappe Maastrichtienne du Sénégal. Contribution à la Connaissance de la Stratigraphie et de la Structure du Bassin Sénégalo-Mauritanien. Ph.D. Thesis, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal, 1997; 118p. [Google Scholar]
- Madioune, D.H. Etude Hydrogéologique du Système Aquifère du Horst de Diass en Condition D’exploitation Intensive (Bassin Sédimentaire Sénégalais): Apport des Techniques de Télédétection, Modélisation, Géochimie et Isotopie. Ph.D. Thesis, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal, 2012; 303p. [Google Scholar]
- Tessier, F. Contribution à la stratigraphie et à la paléontologie de la partie ouest du Sénégal (Crétacé et Tertiaire). Bull. Dir. Mines Afr. Français 1952, 14, 267. [Google Scholar]
- USSL. Diagnosis and Improvement of Saline and Alkaline Soils; United States Salinity Laboratory, US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Durand, J.H. Utilisation des Eaux Salines pour L’irrigation. Etude Pédologique. Ph.D. Thesis, CNRA, Yamoussoukro, Côte d’Ivoire, France, 1956; pp. 39–58. [Google Scholar]
- Trivedy, R.K.; Goel, P.K. Chemical and Biological Methods for Water Pollution Studies; Environmental Publication: Karad, India, 1984. [Google Scholar]
- Donnen, L.D. The Influence of Crops and Soil on Percolating Water. In Proceedings of the 1961 Biennial Conference on GroundWater Recharge, CA, USA, 1–2 September 1961; pp. 156–163. [Google Scholar]
- Kelley, W.P. Use of Saline Irrigation Water. Soil Sci. 1963, 95, 355–391. [Google Scholar] [CrossRef]
- Haritash, A.K.; Gaur, S.; Garg, S. Assessment of water quality and suitability analysis of River Ganga in Rishikesh, India. Appl. Water Sci. 2014, 6, 383–392. [Google Scholar] [CrossRef]
- Gopinath, S.; Srinivasamoorthy, K.; Saravanan, K.; Prakash, R.; Suma, C.S.; Khan, F.; Senthilnathan, D.; Sarma, V.S.; Devi, P. Hydrogeochemical characteristics of coastal groundwater in Nagapattinam and Karaikal aquifers: Implications for saline intrusion and agricultural suitability. Coast Sci. J. 2015, 2, 1–11. [Google Scholar] [CrossRef]
- Sadashivaiah, C.; Ramakrishnaiah, C.; Ranganna, G. Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. Int. J. Environ. Res. Public Health 2008, 5, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.S.R.; Sadashivaiah, C.; Rangnna, G. Hydrochemical Characteristics and Evaluation of Groundwater Quality of Tumkur Amanikere Lake Watershed, Karnataka, India. E-J. Chem. 2009, 6 (Suppl. 1), S211–S218. [Google Scholar] [CrossRef]
- Couture, I. Principaux Critères pour Evaluer la qualité de L’eau en Micro-Irrigation; Centre de Référence en Agriculture et Agroalimentaire du Quebec: Quebec, VI, Canada, 2006; 8p. [Google Scholar]
- Bauder, T.A.; Waskom, R.M.; Davis, J.G. Irrigation Water Quality Criteria, Colorado State University Extension. 2010. Available online: http://www.ext.colostate.edu/pubs/crops/00506.html (accessed on 1 October 2014).
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Waters. Book 2254, 3rd ed.; Scientific Publishers: Jodhpur, India, 1991; p. 263. [Google Scholar]
- Hounslow, A.W. Water Quality Data Analysis and Interpretation; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Prasanna, M.V.; Chidambaram, S.; Gireesh, T.V.; Jabir Ali, T.V. A study on hydrochemical characteristics of surface and subsurface water in and around Perumal Lake, Cuddalore District, Tamil Nadu, South India. Environ. Earth Sci. 2011, 64, 1419–1431. [Google Scholar]
- Khodapanah, L.; Sulaiman, W.N.A.; Khodapanah, N. Groundwater quality assessment for different purposes in Eshtehard District, Tehran, Iran. Eur. J. Sci. Res. 2009, 36, 543–553. [Google Scholar]
- Ramesh, K.; Elango, L. Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India. Environ. Monit. Assess. 2011, 184, 3887–3899. [Google Scholar] [CrossRef] [PubMed]
Chemical Parameters of the Maastrichtian Aquifer | |||||||
---|---|---|---|---|---|---|---|
Variables | Unit | Number ofSamples | Mean | Median | Minimum | Maximum | Ecart-Type |
pH | - | 39 | 7.50 | 7.51 | 6.98 | 7.8 | 0.17 |
Temperature | °C | 39 | 32.8 | 31.7 | 28.2 | 40.9 | 3.5 |
EC | (µS cm−1) | 39 | 557.9 | 462.0 | 274.0 | 1403.0 | 253.6 |
HCO3− | (mg L−1) | 39 | 204.27 | 183.0 | 134.20 | 366.0 | 61.95 |
Cl− | (mg L−1) | 39 | 50.95 | 32.78 | 10.55 | 193.7 | 43.88 |
SO42− | (mg L−1) | 39 | 29.50 | 27.67 | 7.89 | 70.90 | 15.85 |
NO3− | (mg L−1) | 39 | 8.50 | 2.43 | 0.81 | 164.7 | 25.98 |
Na+ | (mg L−1) | 39 | 48.97 | 27.35 | 4.31 | 211.9 | 50.89 |
K+ | (mg L−1) | 39 | 4.71 | 3.57 | 1.38 | 17.7 | 3.69 |
Ca2+ | (mg L−1) | 39 | 34.99 | 34.35 | 7.96 | 71.8 | 14.07 |
Mg2+ | (mg L−1) | 39 | 16.42 | 14.55 | 4.82 | 44.9 | 8.76 |
Chemical Parameters of the Paleocene Aquifer | |||||||
---|---|---|---|---|---|---|---|
Variables | Unit | Number of Samples | Mean | Median | Minimum | Maximum | Ecart-Type |
pH | - | 23 | 7.53 | 7.50 | 6.96 | 8.11 | 0.64 |
Temperature | °C | 23 | 29.61 | 29.6 | 24.5 | 33.3 | 2.2 |
EC | (µS cm−1) | 23 | 1025.7 | 823.0 | 204.0 | 2860.0 | 579.4 |
HCO3− | (mg L−1) | 23 | 238.56 | 244.0 | 0.00 | 530.70 | 130.08 |
Cl− | (mg L−1) | 23 | 132.83 | 72.6 | 10.52 | 537.65 | 132.62 |
SO42− | (mg L−1) | 23 | 67.02 | 36.02 | 3.33 | 302.19 | 77.09 |
NO3− | (mg L−1) | 23 | 10.03 | 6.88 | 1.19 | 49.73 | 11.76 |
Na+ | (mg L−1) | 23 | 69.45 | 34.42 | 5.11 | 441.07 | 95.09 |
K+ | (mg L−1) | 23 | 5.86 | 4.27 | 1.52 | 15.52 | 4.26 |
Ca2+ | (mg L−1) | 23 | 52.11 | 48.29 | 8.14 | 108.19 | 27.17 |
Mg2+ | (mg L−1) | 23 | 37.73 | 25.47 | 1.86 | 87.53 | 27.56 |
Aquifer | Classes | Electrical Conductivity (µS cm−1) | Water Quality | % of Samples |
---|---|---|---|---|
Maastrichtian | C2 | 250 < EC < 750 | Moderate risk of salinization | 79.5 |
C3 | 750 < EC < 2250 | High risk of salinization | 20.5 | |
Paleocene | C1 | EC < 250 | No risk of salinization | 4.3 |
C2 | 250 < EC < 750 | Moderate risk of salinization | 26.0 | |
C3 | 750 < EC < 2250 | High risk of salinization | 65.4 | |
C4 | 2250 < EC < 5000 | Very high risk of salinization | 4.3 |
Aquifer | Classes | SAR (meq L−1) | Water Quality | % of Samples |
---|---|---|---|---|
Maastrichtian | S1 | <10 | Excellent with low alkalinization hazard | 92.30 |
S2 | 10 < SAR < 18 | Good without special control | 7.70 | |
Paleocene | S1 | <10 | Excellent with low alkalinization hazard | 91.30 |
S2 | 10 < SAR < 18 | Good without special control | 8.70 |
Aquifer | Classes | Na% | Water Quality | % of Samples |
---|---|---|---|---|
Maastrichtian | C1 | <20 | Excellent water quality for irrigation | 20.5 |
C2 | 20 < Na% < 40 | Good water quality for irrigation | 51.3 | |
C3 | 40 < Na% < 60 | Permissible water quality for irrigation | 28.2 | |
C4 | 60 < Na% < 80 | Doubtful water quality for irrigation | 0 | |
C5 | Na% > 80 | Unsuitable water quality for irrigation | 0 | |
Paleocene | C1 | <20 | Excellent water quality for irrigation | 30.4 |
C2 | 20 < Na% < 40 | Good water quality for irrigation | 43.5 | |
C3 | 40 < Na% < 60 | Permissible water quality for irrigation | 13 | |
C4 | 60 < Na% < 80 Na% > 60 | Doubtful water quality for irrigation | 13.1 | |
C5 | Na% > 80 | Unsuitable water quality for irrigation | 0 |
Maastrichtian Aquifer | ||||||
Variables | Unit | Mean | Median | Minimum | Maximum | Ecart-Type |
SAR | (meq L−1) | 2.85 | 1.38 | 0.24 | 15.09 | 2.25 |
Kelly ratio (KR) | (meq L−1) | 1.07 | 0.37 | 0.08 | 7.55 | 1.85 |
Salinity potential (SP) | (meq L−1) | 2.19 | 1.82 | 0.70 | 6.38 | 1.36 |
Na% | (meq L−1) | 35.76 | 28.33 | 8.24 | 88.89 | 21.81 |
Paleocene Aquifer | ||||||
Variables | Units | Mean | Median | Minimum | Maximum | Ecart-Type |
SAR | (meq L−1) | 2.67 | 1.27 | 0.23 | 14.50 | 3.52 |
Kelly ratio (KR) | (meq L−1) | 0.68 | 0.30 | 0.05 | 4.58 | 1.04 |
Salinity potential (SP) | (meq L−1) | 4.77 | 2.85 | 0.70 | 16.87 | 4.08 |
Na% | (meq L−1) | 30.88 | 24.54 | 4.95 | 82.83 | 20.08 |
Aquifer | SP | Classes | % of Samples |
---|---|---|---|
Paleocene | <5 | Good to excellent | 69.6 |
5 < SP < 10 | Medium | 17.4 | |
>10 | Poor | 13.0 | |
Maastrichtian | <5 | Good to excellent | 97.4 |
5 < SP < 10 | Medium | 2.6 |
Aquifer | RK | Water Quality | % of Samples |
---|---|---|---|
Maastrichtian | <1 | good for irrigation | 82 |
RK > 1 | not good for irrigation | 18 | |
Paleocene | <1 | good for irrigation | 87 |
RK > 1 | not good for irrigation | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diouf, O.C.; Sarr, H.K.; Diedhiou, M.; Weihermüller, L.; Dieng, N.M.; Faye, S.C.; Vereecken, H.; Faye, S. Groundwater Quality for Irrigation Purposes in the Diass Horst System in Senegal. Water 2022, 14, 3002. https://doi.org/10.3390/w14193002
Diouf OC, Sarr HK, Diedhiou M, Weihermüller L, Dieng NM, Faye SC, Vereecken H, Faye S. Groundwater Quality for Irrigation Purposes in the Diass Horst System in Senegal. Water. 2022; 14(19):3002. https://doi.org/10.3390/w14193002
Chicago/Turabian StyleDiouf, Ousmane Coly, Hameth Khassim Sarr, Mathias Diedhiou, Lutz Weihermüller, Ndeye Maguette Dieng, Seynabou Cissé Faye, Harry Vereecken, and Serigne Faye. 2022. "Groundwater Quality for Irrigation Purposes in the Diass Horst System in Senegal" Water 14, no. 19: 3002. https://doi.org/10.3390/w14193002
APA StyleDiouf, O. C., Sarr, H. K., Diedhiou, M., Weihermüller, L., Dieng, N. M., Faye, S. C., Vereecken, H., & Faye, S. (2022). Groundwater Quality for Irrigation Purposes in the Diass Horst System in Senegal. Water, 14(19), 3002. https://doi.org/10.3390/w14193002