A Novel GRA-NARX Model for Water Level Prediction of Pumping Stations
Abstract
:1. Introduction
- A novel water-level prediction model is proposed based on gray relation analysis (GRA) and NARX neural network with the optimal combination of the time delay and the hidden neurons number for prediction of water levels in front of the pumping stations of a water transfer project.
- The sensitivity to changes of the training algorithm is analyzed.
- The case study is performed in the Tundian pumping station of the Miyun project, China, and the results show that our model outperforms the NARX and GRA-BP models.
2. Study Area and Methods
2.1. Study Area
2.2. Methods
2.2.1. Cleaning and Interpolation of Water-Level Data
2.2.2. Selection of the Main Influencing Factors of Water-Level Information
2.2.3. NARX Neural Network Model for Pumping Station Forebay
2.2.4. Training Algorithms
2.2.5. Evaluation Metrics
2.2.6. Evaluation of the Time Delay and the Hidden Neurons Number
2.2.7. GRA-NARX Neural Network Model for Pumping Station Forebay
3. Results
3.1. Cleaning of Water-Level Data
3.2. Selection of the Main Influencing Factors of Water-Level Information
3.3. Construction of Prediction Model
3.3.1. GRA-NARX Model
3.3.2. GRA-BP Model
3.3.3. NARX Model
3.4. Results and Analysis of GRA-NARX Model
3.5. Comparison with Other Models
4. Discussion
5. Conclusions
- (1)
- The optimal combination of the time delay and the hidden neurons number is obtained by the GRA-NARX model with different training algorithms to minimize the MSE.
- (2)
- The novel GRA-NARX neural network can reduce the prediction complexity and improve the prediction accuracy. The model is applicable to the water-level prediction of the water transfer project with the correlation coefficient of up to 0.98662 and the minimum MAE of 0.00984 m.
- (3)
- The GRA-NARX neural network using BR as the training algorithm (the GRA-NARX-BR model) shows the highest R and the smallest MSE in the prediction of the water level in front of the Tundian pumping station. It is more accurate than the NARX and GRA-BP models and has less run time than the NARX model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, X.; Chen, C. Optimization of operation strategies for an inter basin water diversion system using an aggregation model and improved NSGA-II algorithm. J. Irrig. Drain. Eng. 2020, 146, 04020006. [Google Scholar] [CrossRef]
- Munar, A.M.; Cavalcanti, J.R.; Bravo, J.M.; Fan, F.M.; Motta-Marques, D.D.; Fragoso, C.R. Coupling large-scale hydrological and hydrodynamic modeling: Toward a better comprehension of watershed-shallow lake processes. J. Hydrol. 2018, 564, 424–441. [Google Scholar] [CrossRef]
- Lei, X.; Tian, Y.; Zhang, Z.; Wang, L.; Xiang, X.; Wang, H. Correction of pumping station parameters in a one-dimensional hydrodynamic model using the Ensemble Kalman filter. J. Hydrol. 2019, 568, 108–118. [Google Scholar] [CrossRef]
- Tao, H.; Al-Bedyry, N.K.; Khedher, K.M.; Shahid, S. River water level prediction in coastal catchment using hybridized relevance vector machine model with improved grasshopper optimization. J. Hydrol. 2021, 598, 126477. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chiu, C.C.; Lin, Y.J.; Lee, P.C. Rainfall prediction using innovative grey model with the dynamic index. J. Mar. Sci. Tech. 2013, 21, 9. [Google Scholar] [CrossRef]
- Sahoo, S.; Jha, M.K. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment. Hydrogeol. J. 2013, 21, 1865–1881. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Feng, W.; Huang, H. Short term real-time rolling forecast of urban river water levels based on lSTM: A case study in fuzhou city, China. Int. J. Environ. Res. Public Health 2021, 18, 9287. [Google Scholar] [CrossRef]
- Tang, M.; Lei, X.H.; Long, Y. Water level forecasting in middle route of the south-to-north water diversion project Based on Long Short-term Memory. China Rur. Wat. Hydrop. 2020, 10, 189–193. [Google Scholar]
- Páliz Larrea, P.; Zapata-Ríos, X.; Campozano Parra, L. Application of neural network models and ANFIS for water level forecasting of the Salve Faccha Dam in the Andean Zone in Northern Ecuador. Water 2021, 13, 2011. [Google Scholar] [CrossRef]
- Alsumaiei, A.A. A nonlinear autoregressive modeling approach for forecasting groundwater level fluctuation in urban aquifers. Water 2020, 12, 820. [Google Scholar] [CrossRef]
- Reitz, M.; Sanford, W.E. Estimating quick-flow runoff at the monthly timescale for the conterminous United States. J. Hydrol. 2019, 573, 841–854. [Google Scholar] [CrossRef]
- Tu, Z.J.; Gao, X.G.; Xu, J.; Sun, W.; Sun, Y.; Su, D. A novel method for regional short-term forecasting of water level. Water 2021, 13, 820. [Google Scholar] [CrossRef]
- Barzegar, R.; Aalami, M.T.; Adamowski, J. Coupling a hybrid CNN-LSTM deep learning model with a Boundary Corrected Maximal Overlap Discrete Wavelet Transform for multiscale Lake water level forecasting. J. Hydrol. 2021, 598, 126196. [Google Scholar] [CrossRef]
- Ren, T.; Liu, X.F.; Niu, J.W.; Lei, X.H.; Zhangm, Z. Real-time water level prediction of cascaded channels based on multilayer perception and recurrent neural network. J. Hydrol. 2020, 585, 124783. [Google Scholar] [CrossRef]
- Pandey, K.; Kumar, S.; Malik, A.; Kuriqi, A. Artificial neural network optimized with a genetic algorithm for seasonal groundwater table depth prediction in Uttar Pradesh, India. Sustainability 2020, 12, 8932. [Google Scholar] [CrossRef]
- Xiong, B.; Li, R.P.; Ren, D.; Liu, H.; Xu, T.; Huang, Y. Prediction of flooding in the downstream of the Three Gorges Reservoir based on a back propagation neural network optimized using the AdaBoost algorithm. Nat. Hazards 2021, 107, 1559–1575. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.P.; Yang, Z.; Wang, G.; Zhu, Q. Integration of a parsimonious hydrological model with recurrent neural networks for improved stream flow forecasting. Water 2018, 10, 1655. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhu, Y.; Zhang, X.P.; Ye, M.; Yang, J. Developing a Long Short-Term Memory(LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Baek, S.S.; Pyo, J.C.; Chun, J.A. Prediction of water level and water quality using a CNN-LSTM combined deep learning approach. Water 2020, 12, 3399. [Google Scholar] [CrossRef]
- Wu, M.L.; Yang, K.; Zhang, C.C. Application of KG-BP neural network in flood forecasting of Qinhuai River. Water Resour. Powerpoint 2019, 37, 74–77. [Google Scholar]
- Li, P.; Zhang, J.; Krebs, P. Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach. Water 2022, 14, 993. [Google Scholar] [CrossRef]
- Li, C.; Zhu, L.; He, Z.; Gao, H.; Yang, Y.; Yao, D.; Qu, X. Runoff prediction method based on adaptive Elman neural network. Water 2019, 11, 1113. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; BilliIngs, S.A. Non-linear system identification using neural networks. Int. J. Control 1990, 51, 1191–1214. [Google Scholar] [CrossRef]
- Desouky, M.A.; Abdelkhalik, O. Wave prediction using wave rider position measurements and NARX network in wave energy conversion. Appl. Ocean Res. 2019, 82, 10–21. [Google Scholar] [CrossRef]
- Guzman, S.M.; Paz, J.O.; Tagert, M.L.M. The use of NARX neural networks to forecast daily groundwater levels. Water Resour. Manag. 2017, 31, 1591–1603. [Google Scholar] [CrossRef]
- Di Nunno, F.; Granata, F.; Gargano, R. Forecasting of Extreme Storm Tide Events Using NARX Neural Network-Based Models. Atmosphere 2021, 12, 512. [Google Scholar] [CrossRef]
- Di Nunno, F.; Granata, F. Groundwater level prediction in Apulia region (Southern Italy) using NARX neural network. Environ. Res. 2020, 190, 110062. [Google Scholar] [CrossRef]
- Wunsch, A.; Liesch, T.; Broda, S. Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). J. Hydrol. 2018, 567, 743–758. [Google Scholar] [CrossRef]
- Ezzeldin, R.; Hatata, L. Application of NARX neural network model for discharge prediction through lateral orifices. Alex. Eng. J. 2018, 57, 2991–2998. [Google Scholar] [CrossRef]
- Wang, J.L.; Chen, Y. Using NARX neural network to forecast droughts and floods over Yangtze River Basin. Nat. Hazards 2022, 110, 225–246. [Google Scholar] [CrossRef]
- Fan, Z.N.; Liu, X.S. Application of NARX neural network in dam deformation prediction. J. Yellow River 2022, 44, 125–128. [Google Scholar] [CrossRef]
- Chen, Z.X.; Wang, D. A prediction model of forest preliminary precision fertilization based on improved GRA-PSO-BP neural network. Math. Probl. Eng. 2020, 2020, 1356096. [Google Scholar] [CrossRef]
- Chen, B.; Lin, P.; Lin, Y.; Lai, Y.; Cheng, S.; Chen, Z.; Wu, L. Hour-ahead photovoltaic power forecast using a hybrid GRA-LSTM model based on multivariate meteorological factors and historical power datasets. Conf. Ser. Earth Environ. Sci. 2020, 431, 012059. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Xu, Q.; Liu, Z.Z. Time-series dissolved oxygen prediction based on optimized NARX neural network. J. Donghua Univ. 2021, 48, 16710444. [Google Scholar]
- Di Nunno, F.; De Marinis, G.; Gargano, R.; Granata, F. Tide prediction in the Venice Lagoon using nonlinear autoregressive exogenous (NARX) neural network. Water 2021, 13, 1173. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, J.; Xu, J.; Fu, A.; Li, M. Application of rainfall-runoff simulation based on the NARX dynamic neural network model. Water 2022, 14, 2082. [Google Scholar] [CrossRef]
- Smiti, A. A critical overview of outlier detection methods. Comput Sci. Rev. 2020, 38, 100306. [Google Scholar] [CrossRef]
- Di Nunno, F.; Granata, F.; Gargano, R.; de Marinis, G. Prediction of spring flows using nonlinear autoregressive exogenous (NARX) neural network models. Environ. Monit. Assess. 2021, 193, 350. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Di Nunno, F.; Kushwaha, N.L.; De Marinis, G. River flow rate prediction in the Des Moines watershed (Iowa, USA): A machine learning approach. Stoch. Env. Res. Risk A. 2022, 1–21. [Google Scholar] [CrossRef]
- Liu, W.C.; Chen, W.B. Prediction of water temperature in a subtropical subalpine lake using an artificial neural network and three-dimensional circulation models. Comput. Geosci. 2012, 45, 13–25. [Google Scholar] [CrossRef]
- Chen, W.B.; Liu, W.C.; Hsu, M.H. Comparison of ANN approach with 2D and 3D hydrodynamic models for simulating estuary water stage. Adv. Eng. Softw. 2012, 45, 69–79. [Google Scholar] [CrossRef]
Algorithm 1 NARX Model Improved Algorithm |
1. nDelays = 1:n; 2. Hidden neurons = 1:m; 3. bestPerformance = 1; 4. bestDeylay = 0; 5. bestHidden neurons = 0; 6. performanceMap = zeros(length(nDelays), length(hidden neurons)); 7. for nd = 1:length(nDelays) 8. nDelay = nDelays(nd); 9. inputDelays = 1:nDelay; 10. feedbackDelays = 1:nDelay; 11. for hs = 1:length(hidden neurons) 12. hidden neurons = hidden neurons(hs); 13. net = narxnet(inputDelays, feedbackDelays, hidden neurons); 14. performanceMap(nd, hs) = performance; 15. if performance < bestPerformance 16. disp([‘best performance:’, num2str(performance)]); 17. disp([‘bset delay:’, num2str(nDelay)]); 18. disp([‘best hidden neurons: ’, num2str(hidden neurons)]); 19. bestPerformance = performance; 20. bestDeylay = nDelay; 21. besthidden neurons = hidden neurons; 22. bestNet = net; 23. end 24. end 25. end |
Time | Water Level/m | Time | Water Level/m |
---|---|---|---|
20 July 20:00:00 | 49.52 | 17 September 14:00:00 | 48.85 |
20 July 22:00:00 | 49.59 | 7 October 22:00:00 | 48.87 |
20 July 00:00:00 | 49.59 | 9 October 04:00:00 | 48.86 |
20 July 02:00:00 | 49.45 | 10 October 12:00:00 | 48.86 |
17 September 00:00:00 | 48.87 | 14 October 04:00:00 | 48.87 |
17 September 02:00:00 | 48.77 | 15 October 08:00:00 | 48.87 |
17 September 04:00:00 | 48.75 | 26 October 02:00:00 | 48.86 |
17 September 06:00:00 | 48.86 | 3 November 04:00:00 | 48.87 |
17 September 10:00:00 | 48.87 | 3 November 06:00:00 | 48.86 |
17 September 12:00:00 | 48.80 | 6 November 16:00:00 | 48.87 |
No. | Factor | Correlation |
---|---|---|
1 | r1 | 0.6512 |
2 | r2 | 0.9456 |
3 | r3 | 0.8669 |
4 | r4 | 0.6401 |
5 | r5 | 0.6417 |
Training Algorithm | GRA-NARX | GRA-BP | NARX | |||
---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | |
BR LM SCG | 2.3104 × 10−4 2.9929 × 10−4 4.7089 × 10−4 | 0.00984 0.01216 0.01288 | 5.7121 × 10−4 7.1824 × 10−4 9.8596 × 10−4 | 0.01754 0.02080 0.02559 | 2.3716 × 10−4 4.5796 × 10−4 4.7961 × 10−4 | 0.01042 0.01289 0.01324 |
Samples | Training Algorithm | GRA-NARX | GRA-BP | NARX | |||
---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | ||
Training | BR LM SCG | 1.5449 × 10−4 1.9321 × 10−4 2.6244 × 10−4 | 0.0092 0.0096 0.0110 | 3.2041 × 10−4 5.1076 × 10−4 5.4289 × 10−4 | 0.0135 0.0216 0.0186 | 1.6129 × 10−4 2.4649 × 10−4 2.9929 × 10−4 | 0.0096 0.0107 0.0115 |
Validation | BR LM SCG | 1.4884 × 10−4 1.7689 × 10−4 2.2500 × 10−4 | 0.0094 0.0093 0.0113 | 4.7961 × 10−4 8.2369 × 10−4 8.5884 × 10−4 | 0.0193 0.0227 0.0232 | 1.801 × 10−4 2.4964 × 10−4 4.621 × 10−4 | 0.0091 0.0107 0.0123 |
Test | BR LM SCG | 4.2436 × 10−4 9.0000 × 10−4 1.6892 × 10−3 | 0.0111 0.0167 0.0250 | 1.6241 × 10−3 1.4516 × 10−3 3.2149 × 10−3 | 0.0259 0.0267 0.0413 | 7.3441 × 10−4 4.7961 × 10−3 1.5445 × 10−3 | 0.0121 0.0233 0.0250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Ha, M.; Lei, X.; Zhang, Z. A Novel GRA-NARX Model for Water Level Prediction of Pumping Stations. Water 2022, 14, 2954. https://doi.org/10.3390/w14192954
Liu X, Ha M, Lei X, Zhang Z. A Novel GRA-NARX Model for Water Level Prediction of Pumping Stations. Water. 2022; 14(19):2954. https://doi.org/10.3390/w14192954
Chicago/Turabian StyleLiu, Xiaowei, Minghu Ha, Xiaohui Lei, and Zhao Zhang. 2022. "A Novel GRA-NARX Model for Water Level Prediction of Pumping Stations" Water 14, no. 19: 2954. https://doi.org/10.3390/w14192954
APA StyleLiu, X., Ha, M., Lei, X., & Zhang, Z. (2022). A Novel GRA-NARX Model for Water Level Prediction of Pumping Stations. Water, 14(19), 2954. https://doi.org/10.3390/w14192954