Influence of Substrates on the Quality of Hermetia Meal for Fish Meal Substitution in Nile Tilapia Oreochromis niloticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. BSF Reproduction
2.2. Substrate Utilization
2.3. Mortality Test
2.4. Tilapia Feeding Trial
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Slawski, H.; Adem, H.; Tressel, R.P.; Wysujack, K.; Koops, U.; Kotzamanis, Y.; Wuertz, S.; Schulz, C. Total fish meal replacement with rapeseed protein concentrate in diets fed to rainbow trout (Oncorhynchus mykiss Walbaum). Aquac. Int. 2012, 20, 443–453. [Google Scholar] [CrossRef]
- Slawski, H.; Adem, H.; Tressel, R.P.; Wysujack, K.; Koops, U.; Schulz, C. Replacement of fishmeal by rapeseed protein concentrate in diets for Common carp (Cyprinus carpio L.;). Isr. J. Aquac.-Bamidgeh. 2011, 63, 605–612. [Google Scholar] [CrossRef]
- Tusche, K.; Nagel, F.; Arning, S.; Wuertz, S.; Susenbeth, A.; Schulz, C. Effect of different dietary levels of potato protein concentrate supplemented with feed attractants on growth performance of rainbow trout (Oncorhynchus mykiss). Anim. Feed Sci. Technol. 2013, 183, 202–209. [Google Scholar] [CrossRef]
- Tusche, K.; Wuertz, S.; Susenbeth, A.; Schulz, C. Feeding fish according to organic aquaculture guidelines EC 710/2009: Influence of potato protein concentrates containing various glycoalkaloid levels on health status and growth performance of rainbow trout (Oncorhynchus mykiss). Aquaculture 2011, 319, 122–131. [Google Scholar] [CrossRef]
- Lock, E.R.; Arsiwalla, T.; Waagbo, R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2016, 22, 1202–1213. [Google Scholar] [CrossRef]
- Meric, I.; Wuertz, S.; Kloas, W.; Wibbelt, G.; Schulz, C. Cottonseed oilcake as a protein source in feeds for juvenile tilapia (Oreochromis niloticus): Antinutritional effects and potential detoxification by iron supplementation. Isr. J. Aquac.-Bamidgeh. 2011, 63, 568–576. [Google Scholar]
- Tusche, K.; Arning, S.; Wuertz, S.; Susenbeth, A.; Schulz, C. Wheat gluten and potato protein concentrate–Promising protein sources for organic farming of rainbow trout (Oncorhynchus mykiss). Aquaculture 2012, 344, 120–125. [Google Scholar] [CrossRef]
- Tusche, K.; Berends, K.; Wuertz, S.; Susenbeth, A.; Schulz, C. Evaluation of feed attractants in potato protein concentrate based diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 2011, 321, 54–60. [Google Scholar] [CrossRef]
- Slawski, H.; Adem, H.; Tressel, R.P.; Wysujack, K.; Koops, U.; Wuertz, S.; Schulz, C. Replacement of fish meal with rapeseed protein concentrate in diets fed to wels catfish (Silurus glanis L.). Aquac. Nutr. 2011, 17, 605–612. [Google Scholar] [CrossRef]
- Tacon, A.; Jackson, A. Utilization of conventional and unconventional protein sources in practical fish feeds. In Nutrition and Feeding in Fish; Cowey, C.B., Mackie, A.M., Bell, J.G., Eds.; Academic Press: London, UK, 1985; pp. 119–145. [Google Scholar]
- Kroeckel, S.; Harjes, A.G.E.; Roth, I.; Katz, H.; Wuertz, S.; Susenbeth, A.; Schulz, C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute–Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture 2012, 364, 345–352. [Google Scholar] [CrossRef]
- Barroso, F.G.; de Haro, C.; Sanchez-Muros, M.J.; Venegas, E.; Martinez-Sanchez, A.; Perez-Banon, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422, 193–201. [Google Scholar] [CrossRef]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of insect use for feed and food: Life Cycle Assessment perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Allegretti, G.; Talamini, E.; Schmidt, V.; Bogorni, P.C.; Ortega, E. Insect as feed: An emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. J. Clean. Prod. 2018, 171, 403–412. [Google Scholar] [CrossRef]
- Wang, Y.S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Defoliart, G.R. Edible Insects as Minilivestock. Biodivers. Conserv. 1995, 4, 306–321. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrugg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Minor, M.; Morel, P.C.H.; Najar-Rodriguez, A.J. Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environ. Entomol. 2018, 47, 1609–1617. [Google Scholar] [CrossRef]
- Nguyen, T.T.X.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of Black Soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef]
- Vo, V. Development of Insect Production Automation: Automated Processes for the Production of Black Soldier Fly (Hermetia illucens). Master’s Thesis, School of Electrical Engineering, Aalto University, Espoo, Finland, 2019. [Google Scholar]
- Zhang, J.B.; Tomberlin, J.K.; Cai, M.M.; Xiao, X.P.; Zheng, L.Y.; Yu, Z.N. Research and industrialisation of Hermetia illucens L. in China. J. Insects Food Feed 2020, 6, 5–12. [Google Scholar] [CrossRef]
- Newton, G.L.; Sheppard, D.C.; Watson, D.W.; Burtle, G.J.; Dove, C.R.; Tomberlin, J.K.; Thelen, E.E. The Black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. In Proceedings of the Symposium on the State of the Science of Animal Manure and Waste Management, San Antonio, TX, USA, 5–7 January 2005. [Google Scholar]
- St-Hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Irving, S.; Newton, L.; McGuire, M.A.; Mosley, E.E.; Hardy, R.W.; Sealey, W. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2007, 38, 59–67. [Google Scholar] [CrossRef]
- Elangovan, A.V.; Udayakumar, A.; Saravanakumar, M.; Awachat, V.B.; Mohan, M.; Yandigeri, M.S.; Krishnan, S.; Mech, A.; Rao, S.B.N.; Giridhar, K.; et al. Effect of black soldier fly, Hermetia illucens (Linnaeus) prepupae meal on growth performance and gut development in broiler chicken. Int. J. Trop. Insect Sci. 2021, 41, 2077–2082. [Google Scholar] [CrossRef]
- Elwert, C.; Knips, I.; Katz, P. A novel protein source: Maggot meal of the black soldier fly (Hermetia illucens) in broiler feed. In Tagung Schweine- und Geflügelernährung; Gierus, M., Kluth, H., Eds.; Institut für Agrar- und Ernährungswissenschaften, Universität Halle-Wittenberg: Halle, Germany, 2010; pp. 140–142. [Google Scholar]
- Yu, M.; Li, Z.M.; Chen, W.D.; Rong, T.; Wang, G.; Ma, X.Y. Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol. 2019, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Li, Z.M.; Chen, W.D.; Rong, T.; Wang, G.; Li, J.H.; Ma, X.Y. Use of Hermetia illucens larvae as a dietary protein source: Effects on growth performance, carcass traits, and meat quality in finishing pigs. Meat Sci. 2019, 158, 107837. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, E.P.; Cox, J.R.; Wickersham, T.A.; Drewery, M.L. Evaluation of Black Soldier Fly larvae (Hermetia illucens) as a protein supplement for beef steers consuming low-quality forage. Transl. Anim. Sci. 2022, 6, txac018. [Google Scholar] [CrossRef] [PubMed]
- Adeoye, A.A.; Akegbejo-Samsons, Y.; Fawole, F.J.; Davies, S.J. Preliminary assessment of black soldier fly (Hermetia illucens) larval meal in the diet of African catfish (Clarias gariepinus): Impact on growth, body index, and hematological parameters. J. World Aquac. Soc. 2020, 51, 1024–1033. [Google Scholar] [CrossRef]
- Fawole, F.J.; Adeoye, A.A.; Tiamiyu, L.O.; Ajala, K.I.; Obadara, S.O.; Ganiyu, I.O. Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture 2020, 518, 734849. [Google Scholar] [CrossRef]
- Chaklader, M.R.; Chung, W.H.; Howieson, J.; Fotedar, R. A combination of Hermetia illucens reared on fish waste and poultry by-product meal improves sensory and physicochemical quality of farmed Barramundi filets. Front. Nutr. 2022, 8, 788064. [Google Scholar]
- Chaklader, M.R.; Howieson, J.; Fotedar, R. Growth, hepatic health, mucosal barrier status and immunity of juvenile barramundi, Lates calcarifer fed poultry by-product meal supplemented with full-fat or defatted Hermetia illucens larval meal. Aquaculture 2021, 543, 737026. [Google Scholar] [CrossRef]
- Bordignon, F.; Gasco, L.; Birolo, M.; Trocino, A.; Caimi, C.; Ballarin, C.; Bortoletti, M.; Nicoletto, C.; Maucieri, C.; Xiccato, G. Performance and fillet traits of rainbow trout (Oncorhynchus mykiss) fed different levels of Hermetia illucens meal in a low-tech aquaponic system. Aquaculture 2022, 546, 737279. [Google Scholar] [CrossRef]
- Bruni, L.; Milanovic, V.; Tulli, F.; Aquilanti, L.; Parisi, G. Effect of diets containing full-fat Hermetia illucens on rainbow trout microbiota: A dual cultivation-independent approach with DGGE and NGS. Aquaculture 2022, 553, 738109. [Google Scholar] [CrossRef]
- Fabrikov, D.; Barroso, F.G.; Sanchez-Muros, M.J.; Hidalgo, M.C.; Cardenete, G.; Tomas-Almenar, C.; Melenchon, F.; Guil-Guerrero, J.L. Effect of feeding with insect meal diet on the fatty acid compositions of sea bream (Sparus aurata), tench (Tinca tinca) and rainbow trout (Oncorhynchus mykiss) fillets. Aquaculture 2021, 545, 737170. [Google Scholar] [CrossRef]
- Bruni, L.; Belghit, I.; Lock, E.J.; Secci, G.; Taiti, C.; Parisi, G. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J. Sci. Food Agric. 2020, 100, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Sudha, C.; Ahilan, B.; Felix, N.; Uma, A.; Prabu, E. Effects of dietary protein substitution of fishmeal with black soldier fly larval meal on growth and physiological responses of juvenile striped catfish, Pangasianodon hypophthalmus. Aquac. Res. 2022, 53, 2204–2217. [Google Scholar] [CrossRef]
- Dietz, C.; Liebert, F. Does graded substitution of soy protein concentrate by an insect meal respond on growth and N-utilization in Nile tilapia (Oreochromis niloticus)? Aquac. Rep. 2018, 12, 43–48. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022, towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Mengistu, S.B.; Mulder, H.A.; Benzie, J.A.H.; Komen, H. A systematic literature review of the major factors causing yield gap by affecting growth, feed conversion ratio and survival in Nile tilapia (Oreochromis niloticus). Rev. Aquac. 2020, 12, 524–541. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. On-farm feed management practices for Nile tilapia (Oreochromis niloticus) in Egypt. In On-Farm Feeding and Feed Management in Aquaculture; Hasan, M.R., New, M.B., Eds.; FAO Fisheries and Aquaculture Technical Paper No 583; FAO: Rome, Italy, 2016; pp. 101–129. [Google Scholar]
- El-Sayed, A.F.M. Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture 1999, 179, 149–168. [Google Scholar] [CrossRef]
- Lim, C.E. Tilapia–Biology, Culture, and Nutrition; Webster: Springfield, MA, USA, 2006. [Google Scholar]
- Abdel-Tawwab, M.; Khattab, Y.A.E.; Ahmad, M.H.; Shalaby, A.M.E. Compensatory growth, feed utilization, whole-body composition, and hematological changes in starved juvenile Nile tilapia, Oreochromis niloticus (L.;). J. Appl. Aquac. 2006, 18, 17–36. [Google Scholar] [CrossRef]
- Ng, W.K.; Romano, N. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Rev. Aquac. 2013, 5, 220–254. [Google Scholar] [CrossRef]
- Suresh, A.V.; Lin, C.K. Effect of stocking density on water quality and production of Red tilapia in a recirculated water system. Aquac. Eng. 1992, 11, 1–22. [Google Scholar] [CrossRef]
- Sutthi, N.; Van Doan, H. Saccharomyces crevices and Bacillus spp. effectively enhance health tolerance of Nile tilapia under transportation stress. Aquaculture 2020, 528, 735527. [Google Scholar] [CrossRef]
- Wardani, W.W.; Alimuddin, A.; Zairin, M.; Setiawati, M.; Nuryati, S.; Suprayudi, M.A. Growth performance, robustness against stress, serum insulin, IGF-1 and GLUT4 gene expression of Red tilapia (Oreochromis sp.) fed diet containing graded levels of creatine. Aquac. Nutr. 2021, 27, 274–286. [Google Scholar] [CrossRef]
- Monsees, H.; Klatt, L.; Kloas, W.; Wuertz, S. Chronic exposure to nitrate significantly reduces growth and affects the health status of juvenile Nile tilapia (Oreochromis niloticus L.) in recirculating aquaculture systems. Aquac. Res. 2017, 48, 3482–3492. [Google Scholar] [CrossRef]
- Benli, A.C.K.; Koksal, G.; Ozkul, A. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, 1355–1358. [Google Scholar] [CrossRef]
- Zidan, E.M.; Goma, A.A.; Tohamy, H.G.; Soliman, M.M.; Shukry, M. Insight study on the impact of different salinity levels on behavioural responses, biochemical stress parameters and growth performance of African catfish (Clarias gariepinus). Aquac. Res. 2022, 53, 2750–2759. [Google Scholar] [CrossRef]
- Ai, C.H.; Li, B.J.; Xia, J.H. Mapping QTL for cold-tolerance trait in a GIFT-derived tilapia line by ddRAD-seq. Aquaculture 2022, 556, 738273. [Google Scholar] [CrossRef]
- Prabu, E.; Rajagopalsamy, C.B.T.; Ahilan, B.; Jeevagan, I.J.M.A.; Renuhadevi, M. Tilapia–An excellent candidate species for world aquaculture: A review. Annu. Res. Rev. Biol. 2019, 31, 1–14. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. Tilapia Culture; CABI Publishing: Wallingford, UK, 2006. [Google Scholar]
- Siddiqui, A.Q.; Howlader, M.S.; Adam, A.A. Effects of dietary-protein levels on growth, feed conversion and protein-utilization in fry and young Nile tilapia, Oreochromis niloticus. Aquaculture 1988, 70, 63–73. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M.; Teshima, S. Protein and energy requirements of Nile tilapia, Oreochromis niloticus, fry. Aquaculture 1992, 103, 55–63. [Google Scholar] [CrossRef]
- Siddiqui, A.Q.; Al-Hafedh, Y.S.; Ali, S.A. Effect of dietary protein level on the reproductive performance of Nile tilapia, Oreochromis niloticus (L.). Aquac. Res. 1998, 29, 349–358. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M.; Mansour, C.R.; Ezzat, A.A. Effects of dietary protein level on spawning performance of Nile tilapia (Oreochromis niloticus) broodstock reared at different water salinities. Aquaculture 2003, 220, 619–632. [Google Scholar] [CrossRef]
- Gunasekera, R.M.; Shim, K.F.; Lam, T.J. Influence of protein content of broodstock diets on larval quality and performance in Nile tilapia, Oreochromis niloticus (L). Aquaculture 1996, 146, 245–259. [Google Scholar] [CrossRef]
- Gunasekera, R.M.; Shim, K.F.; Lam, T.J. Effect of dietary protein level on spawning performance and amino acid composition of eggs of Nile tilapia, Oreochromis niloticus. Aquaculture 1996, 146, 121–134. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Sheppard, D.C. Factors influencing mating and oviposition of black soldier flies (Diptera: Stratiomyidae) in a colony. J. Entomol. Sci. 2002, 37, 345–352. [Google Scholar] [CrossRef]
- Zhang, J.B.; Huang, L.; He, J.; Tomberlin, J.K.; Li, J.H.; Lei, C.L.; Sun, M.; Liu, Z.D.; Yu, Z.N. An artificial light source influences mating and oviposition of black soldier flies, Hermetia illucens. J. Insect Sci. 2010, 10, 1–7. [Google Scholar] [CrossRef]
- Agbohessou, P.S.; Mandiki, S.N.M.; Gougbedji, A.; Megido, R.C.; Lima, L.M.W.; Cornet, V.; Lambert, J.; Purcaro, G.; Francis, F.; Laleye, P.A.; et al. Efficiency of fatty acid-enriched dipteran-based meal on husbandry, digestive activity and immunological responses of Nile tilapia Oreochromis niloticus juveniles. Aquaculture 2021, 545, 737193. [Google Scholar] [CrossRef]
- Smets, R.; Verbinnen, B.; Van De Voorde, I.; Aerts, G.; Claes, J.; Van Der Borght, M. Sequential Extraction and Characterisation of lipids, proteins, and chitin from Black Soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste Biomass Valoriz. 2020, 11, 6455–6466. [Google Scholar] [CrossRef]
- Lievens, S.; Poma, G.; De Smet, J.; Van Campenhout, L.; Covaci, A.; Van der Borght, M. Chemical safety of black soldier fly larvae (Hermetia illucens), knowledge gaps and recommendations for future research: A critical review. J. Insects Food Feed 2021, 7, 383–396. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Nijhout, H.F.; Williams, C.M. Control of molting and metamorphosis in Tobacco hornworm, Manduca sexta (L)–Growth of last-instar larva and decision to pupate. J. Exp. Biol. 1974, 61, 481–491. [Google Scholar] [CrossRef]
- Tingey, W.M. Glycoalkaloids as pest resistance factors. Am. Potato J. 1984, 61, 157–167. [Google Scholar] [CrossRef]
- Petermann, J.B.; Morris, S.C. The spectral responses of chlorophyll and glycoalkaloid synthesis in potato-tubers (Solanum tuberosum). Plant. Sci. 1985, 39, 105–110. [Google Scholar] [CrossRef]
- Nguyen, T.T.X.; Tomberlin, J.K.; Vanlaerhoven, S. Influence of resources on Hermetia illucens (Diptera: Stratiomyidae) larval development. J. Med. Entomol. 2013, 50, 898–906. [Google Scholar] [CrossRef]
- Booram, C.V.; Newton, G.L.; Hale, O.M.; Barker, R.W. Manure as a Substrate for Protein Production via Hermetia illucens Larvae; Cornell University: Ithaca, NY, USA, 1977; pp. 599–604. [Google Scholar]
- St-Hilaire, S.; Cranfill, K.; McGuire, M.A.; Mosley, E.E.; Tomberlin, J.K.; Newton, L.; Sealey, W.; Sheppard, C.; Irving, S. Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. J. World Aquac. Soc. 2007, 38, 309–313. [Google Scholar] [CrossRef]
- Hale, O.M. Dried Hermetia illucens larvae (Diptera: Stratiomyidae) as a feed additive for poultry. GA Entomol. Soc. 1973, 8, 16–20. [Google Scholar]
- Zarantoniello, M.; Randazzo, B.; Nozzi, V.; Truzzi, C.; Giorgini, E.; Cardinaletti, G.; Freddi, L.; Ratti, S.; Girolametti, F.; Osimani, A.; et al. Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Sci. Rep. 2021, 11, 1057. [Google Scholar] [CrossRef]
- Fasakin, E.A.; Balogun, A.M.; Ajayi, O.O. Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquac. Res. 2003, 34, 733–738. [Google Scholar] [CrossRef]
- Abu Bakar, N.H.; Razak, S.A.; Taufek, N.M.; Alias, Z. Evaluation of black soldier fly (Hermetia illucens) prepupae oil as meal supplementation in diets for red hybrid tilapia (Oreochromis sp.). Int. J. Trop. Insect Sci. 2021, 41, 2093–2102. [Google Scholar] [CrossRef]
- Ozdemir, S.; Yetilmezsoy, K. A mini literature review on sustainable management of poultry abattoir wastes. J. Mater. Cycles Waste 2020, 22, 11–21. [Google Scholar] [CrossRef]
- Albrektsen, S.; Kortet, R.; Skov, P.V.; Ytteborg, E.; Gitlesen, S.; Kleinegris, D.; Mydland, L.T.; Hansen, J.O.; Lock, E.J.; Morkore, T.; et al. Future feed resources in sustainable salmonid production: A review. Rev. Aquac. 2022, 14, 1790–1812. [Google Scholar] [CrossRef]
- Cao, S.H.; Li, P.Y.; Huang, B.S.; Song, Z.D.; Hao, T.T.; Wang, C.Q.; Wang, M.Q. Assessing feasibility of replacement of fishmeal with enzyme-treated feather meal in the diet of juvenile turbot (Scophthalmus maximus L.). Aquac. Nutr. 2020, 26, 1340–1352. [Google Scholar] [CrossRef]
- Zarantoniello, M.; Randazzo, B.; Gioacchini, G.; Truzzi, C.; Giorgini, E.; Riolo, P.; Gioia, G.; Bertolucci, C.; Osimani, A.; Cardinaletti, G.; et al. Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: A multidisciplinary approach. Sci. Rep. 2020, 10, 10648. [Google Scholar] [CrossRef]
- Cardoso, M.D.; Godoy, A.C.; Oxford, J.H.; Rodrigues, R.; Cardoso, M.D.; Bittencourt, F.; Signor, A.; Boscolo, W.R.; Feiden, A. Apparent digestibility of protein hydrolysates from chicken and swine slaughter residues for Nile tilapia. Aquaculture 2021, 530, 735720. [Google Scholar] [CrossRef]
- Agbohessou, P.S.; Mandiki, S.N.M.; Gougbedji, A.; Megido, R.C.; Hossain, M.S.; De Jaeger, P.; Larondelle, Y.; Francis, F.; Laleye, P.A.; Kestemont, P. Total replacement of fish meal by enriched-fatty acid Hermetia illucens meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles. Aquac. Nutr. 2021, 27, 880–896. [Google Scholar] [CrossRef]
- Devic, E.; Leschen, W.; Murray, F.; Little, D.C. Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing Black Soldier Fly (Hermetia illucens) larvae meal. Aquac. Nutr. 2018, 24, 416–423. [Google Scholar] [CrossRef] [Green Version]
Substrate | Quantity of Substrate [kg/kg BSFM] | |
---|---|---|
C | chicken feed | 1.980 |
P | potato protein | 3.830 |
M | maize silage | 3.190 |
R | rapeseed oil cake | 2.970 |
S | soybean meal | 1.850 |
Experimental Groups: | FM (Control) | BM | BC | BR | BP | BS |
---|---|---|---|---|---|---|
Protein percentage BSFM [%] | 0 | 75 | 75 | 75 | 75 | 75 |
Protein percentage fish meal [%] | 95 | 20 | 20 | 20 | 20 | 20 |
ingredients: | ||||||
wheat gluten 1 [g/kg] | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
wheat starch 1 [g/kg] | 328.96 | 240.42 | 166.07 | 283.82 | 297.72 | 273.3 |
fish meal 2 [g/kg] | 476.56 | 95.31 | 95.31 | 95.31 | 95.91 | 95.91 |
BSFM maize silage [g/kg] | 0 | 639.77 | 0 | 0 | 0 | 0 |
BSFM chicken feed [g/kg] | 0 | 0 | 714.12 | 0 | 0 | 0 |
BSFM rapeseed oil cake [g/kg] | 0 | 0 | 0 | 576.37 | 0 | 0 |
BSFM potato protein [g/kg] | 0 | 0 | 0 | 0 | 462.47 | 0 |
BSFM soybean meal [g/kg] | 0 | 0 | 0 | 0 | 0 | 466.89 |
sunflower oil 3 [g/kg] | 170.00 | 0.00 | 0.00 | 20.00 | 120.00 | 140.00 |
vitamine mix 4 [g/kg] | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 |
mineral mix 4 [g/kg] | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Proximate composition | ||||||
crude protein | 330.98 | 330.85 | 330.50 | 330.89 | 330.72 | 330.82 |
crude fat | 220.15 | 211.56 | 235.13 | 215.35 | 215.35 | 220.18 |
crude ash | 85.99 | 62.34 | 120.67 | 60.56 | 60.56 | 58.15 |
NfE | 362.88 | 395.25 | 313.70 | 393.20 | 393.20 | 390.85 |
Gross energy [MJ/kg] | 21.4 | 21.70 | 20.94 | 22.02 | 22.02 | 22.04 |
Group: | C | P | M | R | S |
---|---|---|---|---|---|
Wi 1 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.02 | 0.04 ± 0.02 |
Wf 2 | 176.1 ± 34.0 c | 16.2 ± 10.3 a | 69.0 ± 23.8 b | 89.6 ± 36.5 b | 118.8 ± 10.6 b,c |
WG 3 | 176.0 ± 34.0 c | 16.1 ± 10.3 a | 69.0 ± 23.8 b | 89.6 ± 36.5 b | 118.8 ± 10.6 b,c |
SGR 4 | 29.9 a ± 1.5 c | 20.8 ± 3.3 a | 26.4 ± 2.1 a,b | 26.8 ± 2.0 b | 28.5 ± 1.4 b,c |
M 5 | 18% c,d | 47% a | 26% b,c | 32% a,b | 14% d |
Group | DM | CP | CF | A | NfE | Gross Energy [MJ/kg] |
---|---|---|---|---|---|---|
C | 34.8 ± 1.7 a,b | 35.2 ± 0.03 a | 31.5 ± 0.4 c | 14.4 ± 0.8 c | 18.9 ± 1.2 a | 22.6 ± 0.3 a,b |
P | 32.5 ± 1.6 a | 54.4 ± 0.05 d | 18.4 ± 0.1 b | 8.0 ± 0.6 a,b | 19.3 ± 0.8 a | 23.0 ± 0.1 b |
M | 37.4 ± 1.9 b | 39.3 ± 0.02 b | 32.2 ± 0.1 c | 6.9 ± 0.1 a | 21.6 ± 0.2 b | 24.6 ± 0.2 c |
R | 38.7 ± 1.9 b | 43.6 ± 0.02 c | 31.4 ± 0.6 c | 7.4 ± 0.2 a | 17.6 ± 0.9 a | 25.4 ± 0.1 c |
S | 31.1 ± 1.6 a | 53.8 ± 0.03 d | 14.9 ± 0.2 a | 8.6 ± 0.01 b | 22.7 ± 0.3 b | 21.7 ± 0.3 a |
FM | BP | BC | BM | BR | BS | |
---|---|---|---|---|---|---|
Wi 1 | 13.3 ± 2.1 | 13.2 ±2.3 | 13.1 ± 2.2 | 13.8 ± 2.6 | 13.4 ± 2.1 | 12.5 ± 2.1 |
Wf 2 | 19.3 ± 3.2 | 20.0 ±3.1 | 17.9 ± 3.0 | 19.6 ± 4.8 | 19.1 ± 7.3 | 19.6 ± 4.0 |
SGR 3 | 1.3 ± 0.02 | 1.5 ± 0.3 | 1.0 ± 0.06 | 1.2 ± 0.2 | 1.3 ± 0.08 | 1.6 ± 0.3 |
FCR 4 | 1.8 ± 0.03 | 1.7 ± 0.4 | 2.2 ± 0.1 | 2.0 ± 0.3 | 1.9 ± 0.1 | 1.5 ± 0.3 |
PER 5 | 1.7 ± 0.03 | 1.9 ± 0.4 | 1.4 ± 0.8 | 1.5 ± 0.3 | 1.6 ±0.1 | 2.0 ± 0.4 |
FCF 6 | 1.8 ± 0.03 | 1.8 ± 0.05 | 1.8 ± 0.04 | 1.8 ±0.06 | 1.9 ±0.01 | 1.8 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuertz, S.; Pahl, C.H.; Kloas, W. Influence of Substrates on the Quality of Hermetia Meal for Fish Meal Substitution in Nile Tilapia Oreochromis niloticus. Water 2022, 14, 2953. https://doi.org/10.3390/w14192953
Wuertz S, Pahl CH, Kloas W. Influence of Substrates on the Quality of Hermetia Meal for Fish Meal Substitution in Nile Tilapia Oreochromis niloticus. Water. 2022; 14(19):2953. https://doi.org/10.3390/w14192953
Chicago/Turabian StyleWuertz, Sven, Cem Hinrich Pahl, and Werner Kloas. 2022. "Influence of Substrates on the Quality of Hermetia Meal for Fish Meal Substitution in Nile Tilapia Oreochromis niloticus" Water 14, no. 19: 2953. https://doi.org/10.3390/w14192953
APA StyleWuertz, S., Pahl, C. H., & Kloas, W. (2022). Influence of Substrates on the Quality of Hermetia Meal for Fish Meal Substitution in Nile Tilapia Oreochromis niloticus. Water, 14(19), 2953. https://doi.org/10.3390/w14192953