Perspectives for Quality Evaluation of Some Mineral Waters from Slanic Moldova
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Measurement Techniques
2.2.1. Total Dissolved Solids (TDS) and pH
2.2.2. UV-Vis
2.2.3. ICP-MS
2.3. Programs Used for Data Processing
3. Results
3.1. Evolution of the Mineralization Degree over Time
3.2. Evaluation and Comparative Analyses of the Quality Indicators of the Natural Mineral Waters
3.3. Determination of Major and Trace Elements Using ICP-MS
3.4. Piper Diagram
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Government Decision no. 1020 for the Approval of the Technical Norms for the Exploitation and Marketing of Natural Mineral Waters. Romanian Official Monitor no. 854 from 22nd September (GD 1020: 2005). 2005. Available online: http://www.namr.ro/legislation/romanian-legislation/water-domain (accessed on 11 January 2021).
- Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the Exploitation and Marketing of Natural Mineral Waters. Available online: https://op.europa.eu/en/publication-detail/-/publication/41c107dd-8061-4bb5-bf05-d12ecf8c4697 (accessed on 11 January 2021).
- Commission Directive 2003/40/EC of 16 May 2003 Establishing the List, Concentration Limits and Labelling Requirements for the Constituents of Natural Mineral Waters and the Conditions for Using Ozone-Enriched Air for the Treatment of Natural Mineral Waters and Spring Waters. Available online: https://op.europa.eu/en/publication-detail/-/publication/1ddc0621-7e4c-4fac-bc2b-3cd4a50e78a3 (accessed on 11 January 2021).
- WHO (World Health Organisation). Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the 1st Addendum; World Health Organization: Geneva, Switzerland, 2017; Guideline; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 11 January 2021).
- Giurgea, E. Mesure quantitative de l’alcalinite des eaux minerales de Roumanie. Bull. Sect. Sci. Acad. Roum. 1914, 18–23. [Google Scholar]
- Kamiwaki, M.; Terasawa, M.; Masuda, Y.; Uzawa, M. Anions, cations and silica in commercial mineral water products, city waters and well waters. J. Jpn. Soc. Food Sci. Technol. Nippon Shokuhin Kagaku Kogaku Kaishi 1992, 39, 432–438. [Google Scholar]
- Fernández-Turiel, J.L.; Llorens, J.F.; López-Vera, F.; Gómez-Artola, C.; Morell, I.; Gimeno, D. Strategy for water analysis using ICP-MS. Fresenius J. Anal. Chem. 2000, 368, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.A.; Ewane, E.; Jones, J.; Wilson, B.L. Chemical evaluation of commercial bottled drinking water from Egypt. J. Food Compos. Anal. 2001, 14, 127–152. [Google Scholar] [CrossRef]
- Ikem, A.; Odueyungbo, S.; Egiebor, N.O.; Nyavor, K. Chemical quality of bottled waters from three cities in eastern Alabama. Sci. Total Environ. 2002, 285, 165–175. [Google Scholar] [CrossRef]
- Barut, I.F.; Erdogan, N.; Basak, E. Hydrogeochemical evaluation of Western Anatolian mineral waters. Environ. Geol. 2004, 45, 494–503. [Google Scholar] [CrossRef]
- Rosborg, I.; Nihlgård, B.; Gerhardsson, L.; Gernersson, M.L.; Ohlin, R.; Olsson, T. Concentrations of inorganic elements in bottled waters on the Swedish market. Environ. Geochem. Health 2005, 27, 217–227. [Google Scholar] [CrossRef]
- Thirumalini, S.; Kurian, J. Correlation between Electrical Conductivity and Total Dissolved Solids in natural waters. Malays. J. Sci. 2009, 28, 55–61. [Google Scholar] [CrossRef]
- Bodiš, D.; Kordik, J.; Slaninka, I.; Malík, P.; Liščák, P.; Panák, D.; Božíková, J.; Marcin, D. Mineral waters in Slovakia—Evaluation of chemical composition stability using both historical records and the most recent data. J. Geochem. Explor. 2010, 107, 382–390. [Google Scholar] [CrossRef]
- Birke, M.; Reimann, C.; Demetriades, A.; Rauch, U.; Lorenz, H.; Harazim, B.; Glatte, W. Determination of major and trace elements in European bottled mineral water—Analytical methods. J. Geochem. Explor. 2010, 107, 217–226. [Google Scholar] [CrossRef]
- Rajković, M.B.; Sredović, I.D.; Račović, M.B.; Stojanović, M.D. Analysis of quality mineral water of Serbia: Region Arandjelovac. J. Water Resource Prot. 2012, 4, 783–794. [Google Scholar] [CrossRef]
- Bodiš, D.; Božíková, J.; Mackových, D. Mineral waters of the Slovak spas—Chemical analysis, history and present. Slovak Geol. Mag. 2016, 16, 41–56. [Google Scholar]
- Levei, E.A.; Hoaghia, M.-A.; Senila, M.; Miclean, M.; Tanaselia, C.; Carstea, E.M. Chemical composition of some Romanian bottled natural mineral waters. Stud. Univ. Babes-Bolyai Chem. 2016, 61, 391–400. [Google Scholar]
- Brima, E.I. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA. Appl. Water Sci. 2017, 7, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Kilic, S. Survey of trace elements in bottled natural mineral waters using ICP-MS. Environ. Monit. Assess. 2019, 191, 452. [Google Scholar] [CrossRef]
- Vardè, M.; Servidio, A.; Vespasiano, G.; Pasti, L.; Cavazzini, A.; Di Traglia, M.; Rosselli, A.; Cofone, F.; Apollaro, C.; Cairns, W.R.L.; et al. Ultra-trace determination of total mercury in Italian bottled waters. Chemosphere 2019, 219, 896–913. [Google Scholar] [CrossRef]
- Roje, V.; Šutalo, P. Trace and major elements in Croatian bottled waters. J. Geochem. Explor. 2019, 201, 79–87. [Google Scholar] [CrossRef]
- Untila, C.; Caraman, M.; Nedeff, V.; Barsan, N.; Sandu, I.; Chitimus, A.D.; Cretu, V.V.; Tomozei, C.; Sandu, A.V. Evaluation of heavy metals and organic compounds in water samples collected from various sources from Republic of Moldova and Romania. Rev. Chim. 2019, 70, 3570–3574. [Google Scholar] [CrossRef]
- Apollaro, C.; Buccianti, A.; Vespasiano, G.; Vardè, M.; Fuoco, I.; Barca, D.; Bloise, A.; Miriello, D.; Cofone, F.; Servidio, A.; et al. Comparative geochemical study between the tap waters and the bottled mineral waters in Calabria (southern Italy) by compositional data analysis (CoDA) developments. Appl. Geochem. 2019, 107, 19–33. [Google Scholar] [CrossRef]
- Reyes-Toscano, C.A.; Alfaro-Cuevas-Villanueva, R.; Cortés-Martínez, R.; Morton-Bermea, O.; Hernández-Álvarez, E.; Buenrostro-Delgado, O.; Ávila-Olivera, J.A. Hydrogeochemical characteristics and assessment of drinking water quality in the urban area of Zamora, Mexico. Water 2020, 12, 556. [Google Scholar] [CrossRef]
- Lyubomirova, V.; Mihaylova, V.; Djingova, R. Chemical characterization of Bulgarian bottled mineral waters. J. Food Compos. Anal. 2020, 93, 103595. [Google Scholar] [CrossRef]
- Bodor, K.; Bodor, Z.; Szep, A.; Szep, R. Classification and hierarchical cluster analysis of principal Romanian bottled mineral waters. J. Food Compos. Anal. 2021, 100, 103903. [Google Scholar] [CrossRef]
- Carstea, E.M.; Levei, E.A.; Hoaghia, M.-A.; Savastru, R. Quality assessment of Romanian bottled mineral water and tap water. Environ. Monit. Assess. 2016, 188, 521. [Google Scholar] [CrossRef]
- Schoenhofer, F. Natural radionuclides in mineral waters sold in upper Silesia, Poland. Their measurement, doses and compliance with regulations. In Proceedings of the LSC 2008 International Conference on Advances in Liquid Scintillation Spectrometry (LSC 2008 Proceedings), Davos, Switzerland, 25–30 May 2008; Eikenberg, J., Jäggi, M., Beer, H., Baehrle, H., Eds.; Radiocardon: Tucson, AZ, USA, 2009. [Google Scholar]
- Jobbágy, V.; Kávási, N.; Somlai, J.; Máte, B.; Kovács, T. Radiochemical characterization of spring waters in Balaton Upland, Hungary, estimation of radiation dose to members of public. Microchem. J. 2010, 94, 159–165. [Google Scholar] [CrossRef]
- Sipos, L.; Kovács, Z.; Sági-Kiss, V.; Csiki, T.; Kókai, Z.; Fekete, A.; Héberger, K. Discrimination of mineral waters by electronic tongue, sensory evaluation and chemical analysis. Food Chem. 2012, 135, 2947–2953. [Google Scholar] [CrossRef]
- Haywood, J.K.; Smith, B.H. Mineral waters of the United States. U.S. Dept. Agr. Bur. Chem. Bull. 1907, 91, 8–11. [Google Scholar]
- Palmer, C. The Geochemical Interpretation of Water Analyses; U.S. Geological Survey Bulletin; Government Printing Office: Washington, DC, USA, 1911; Volume 479, pp. 1–35. [CrossRef]
- Kurlov, I.G. Classification of Siberian medicinal mineral waters. Physiother. Inst. Tomsk. (USSR) 1928, 24, 1348–1349. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Stuyfzand, P.J. A new hydrochemical classification of water types. In Regional Characterization of Water Quality (Proceedings of the Baltimore symposium, May 1989); International Association of Hydrological Sciences (IAHS) Publications: Oxford, UK, 1989; Volume 182, pp. 89–98. Available online: www.researchgate.net/publication/238108172 (accessed on 20 January 2021).
- van der Aa, M. Classification of mineral water types and comparison with drinking water standards. Environ. Geol. 2003, 44, 554–563. [Google Scholar] [CrossRef]
- Brenner, I.B.; Taylor, H.E. A critical review of inductively coupled plasma-mass spectrometry for geoanalysis, geochemistry, and hydrology. Part I. Analytical performance. Crit. Rev. Anal. Chem. 2006, 23, 355–367. [Google Scholar] [CrossRef]
- Hart, B.T.; Hines, T. Trace Elements in Rivers. In Trace Elements in Natural Waters; Salbu, B., Steinnes, E., Eds.; CRC Press: Boca Raton, FL, USA, 1995; pp. 203–221. [Google Scholar]
- Hall, G.E.M.; Vaive, J.E.; Pelchat, J.C. Performance of inductively coupled plasma mass spectrometric methods u sed in the determination of trace elements in surface waters in hydrogeochemical surveys. J. Anal. At. Spectrom. 1996, 11, 779–786. [Google Scholar] [CrossRef]
- Mares, G. Mineral Waters in Romania (Chemical Composition, Temperature, Notions of Pharmacodynamics); Vestirea Publishing House: Bucharest, Romania, 1937. (In Romanian) [Google Scholar]
- Crasu, V.; Manole, V.; Cociasu, E.M. Mineral Waters from Romania. Bucegi County (Technical and Economic Studies, Series B, Chemistry, No. 15/Geological Institute of Romania); Official Monitor; National Publishing House: Bucharest, Romania, 1941; (In Romanian). Available online: https://igr.ro/wp-content/uploads/2021/02/STE_B_v15.pdf (accessed on 10 March 2021).
- Geamanu, N.; Geamanu, V.; Lungu, P.; Lazu, I. Chemical differentiations in the mineral waters of the subcarpathian zone between the Suceava valley and the Buzau valley (In French). In Technical and Economic Studies, Series E, Hydrogeology, No. 12, Institute of Geology and Geophysics (Proceedings of the Interna-tional Symposium on Mineral and Thermal Waters, Eforie, Romania, 7–14 June 1974); Geological Institute of Romania: Bucharest, Romania, 1975; pp. 77–83. Available online: https://igr.ro/wp-content/uploads/2021/03/STE_E_v12.pdf (accessed on 28 January 2021).
- Pricăjan, A.; Airinei, Ş.t. Spa Hydromineral Wealth in Romania; Scientific and Encyclopedic Publishing House Romania: Bucharest, Romania, 1981. (In Romanian) [Google Scholar]
- Feru, A. A Comparative Revue of the Bottled Mineral Natural Water Characteristics in Roumania and the Most Important European States. In Proceedings of the International Symposium A. H. R. “Mineral and thermal groundwater”, Miercurea Ciuc, Romania, 24–27 June 1998; pp. 77–82. [Google Scholar]
- Ţenu, A.; Davidescu, F. Environmental isotopic studies on mineral and thermal waters in Romania: A review over the last 25 years. In Proceedings of the International Symposium A. H. R. “Mineral and thermal groundwater”, Miercurea Ciuc, Romania, 24–27 June 1998; pp. 271–280. [Google Scholar]
- Lujerdean, A.; Bunea, A.; Fogorosi, C. Chemical characterization of carbonated and uncarbonated mineral water from Stâna de Vale sources. Bull. Univ. Agric. Sci. Vet. Med. Cluj Napoca Anim. Sci. Biotechnol. 2006, 62, 223–227. [Google Scholar] [CrossRef]
- Feru, A. Natural Mineral Water Guide; Novis SRL Publishing House: Cluj Napoca, Romania, 2012. (In Romanian) [Google Scholar]
- Enciu, P.; Feru, A.; Mitrofan, H.; Oraseanu, I.; Palcu, M.; Tenu, A. A brief history of Romanian hydrogeology. In History of Hydrogeology, 1st ed.; Howden, N., Mather, J.R., Eds.; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2013; pp. 229–242. [Google Scholar]
- Mereţ, R.; Zaharia, L. Mineral waters in Brașov county. Characteristics and use. In Proceedings of the International Conference Conference: Air and Water—Components of the Environment, 10th Edition, Sovata, Romania, 15–17 March 2018; Presa Universitara Clujeana: Cluj-Napoca, Romania, 2018; pp. 271–278. [Google Scholar] [CrossRef]
- Șumuleanu, C.; Botezatu, M.; Gheorgiu, A. Chemical Analysis of Mineral Waters from Slănic Moldova (Bacău County); Cultura Publishing House: Bucharest, Romania, 1933. (In Romanian) [Google Scholar]
- Jeanrenaud, P.; Saraiman, A. Geology of Central Moldova between Siret and Prut; Alexandru, I., Ed.; Cuza Publishing House: Iasi, Romania, 1995; p. 196. (In Romanian) [Google Scholar]
- Stoica, C. Encyclopedia of the Trotus River Valley; Magic Print Publishing House: Onești, Romania, 2008. (In Romanian) [Google Scholar]
- Konya, S. Waters from Slănic, Critique of Recent Chemical Analyzes on Mineral Springs No. I and No. III from Slănic (Moldova); H. Goldner Publishing House: Iași, Romania, 1895. (In Romanian) [Google Scholar]
- Busnea, R.D. The Story of a Corner of Heaven, Slănic Moldova; Magic Print Publishing House: Onesti, Romania, 2013; pp. 15–21. (In Romanian) [Google Scholar]
- Berlescu, E.; Chioreanu, T.; Cociașu, E.; Dene, A.; Dinculescu, T.; Ștefănescu, S.; Tătăranu, I. Guide for Referrals to the Balneo-climatic Cure; Medical Publishing House: Bucharest, Romania, 1965; pp. 28–41, 172–173. (In Romanian) [Google Scholar]
- Nicoară, Y.; Busnea, R. Slănic Moldova. Small Tourist Guide Moldova; Sport-Turism Publishing House: Bucharest, Romania, 1981; pp. 136–137. (In Romanian) [Google Scholar]
- Sîrcu, R.E. Hydrogeochemical Study of Mineral Waters in the Eastern Carpathians, with Special Regard to the Slănic Moldova Area. Ph.D. Thesis, Alexandru Ioan Cuza University, Iasi, Romania, 2006. (In Romanian). [Google Scholar]
- Report of the National Institute of Recovery, Physical Medicine and Balneology; Romanian National Institute of Recovery: Slănic Moldova, Romania, 2013. (In Romanian)
- Report of the National Research-Development Institute for Industrial Ecology; Romanian National Institute of Recovery: Slănic Moldova, Romania, 2018. (In Romanian)
- Stoica, C. Slănic Moldova “Pearl” of the Eastern Carpathians; Magic Print Publishing House: Onești, Romania, 2021; pp. 308–347. (In Romanian) [Google Scholar]
- Misăilă, L.; Nedeff, F.M.; Barsan, N.; Grosu, L.; Patriciu, O.I.; Gavrilă, L.; Fînaru, A.L. WATERSHED—Android Application for the Mineral Waters Classification. Rev. Chim. 2019, 6, 2212–2217. [Google Scholar] [CrossRef]
- Misăilă, L.; Bârsan, N.; Nedeff, F.M.; Răducanu, D.; Grosu, L.; Patriciu, O.I.; Gavrilă, L.; Fînaru, A.L. Quality assessment of Slanic-Moldova mineral waters stored in reusable bottles. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2020, 21, 253–262. Available online: https://pubs.ub.ro/?pg=revues&rev=cscc6&num=202002&vol=2&aid=5109 (accessed on 15 February 2021).
- ISO 15587-2:2002; Water Quality—Digestion for the Determination of Selected Elements in Water—Part 2: Nitric Acid Digestion. Available online: https://www.iso.org/standard/31355.html (accessed on 15 March 2021).
- Guidelines for the Safety Assessment of Natural Mineral Waters, French Food Safety Agency. 2008. Available online: https://www.anses.fr/en/system/files/EAUX-Ra-EauxMineralesEN.pdf (accessed on 15 January 2021).
- APHA-WWA-WPC. Standard Methods for the Examination Water and Wastewater, 21st ed.; APHA-AWWA-WPCF, Ed.; APHA-AWWA-WPC: Washington, DC, USA, 2005. [Google Scholar]
- SR EN 27888:1997; Water Quality Standard—Determination of Electrical Conductivity. Romanian Association for Standardization (ASRO): Bucharest, Romania, 1997.
- HACH Company. DR 3900 UV-Vis Spectrophotometer Procedures Manual; HACH Company: Loveland, CO, USA, 2018. [Google Scholar]
- ISO 17294-1:2004; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 1: General Guidelines. Available online: https://www.iso.org/standard/32957.html (accessed on 25 January 2021).
- ISO 17294-2:2016; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. Available online: https://www.iso.org/standard/62962.html (accessed on 15 January 2021).
- Commission Directive 2009/90/EC of 31 July 2009 Laying Down, Pursuant to Directive 2000/60/EC of the European Parliament and of the Council, Technical Specifications for Chemical Analysis and Monitoring of Water Status. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009L0090 (accessed on 21 January 2021).
- Dai, Q.; Shu, X.O.; Deng, X.; Xiang, Y.B.; Li, H.; Yang, G.; Shrubsole, M.J.; Ji, B.; Cai, H.; Chow, W.H.; et al. Modifying effect of calcium/magnesium intake ratio and mortality: A population-based cohort study. BMJ Open 2013, 3, e002111. [Google Scholar] [CrossRef]
- Rattanachaiwong, S.; Singer, P. Diets and Diet Therapy: Trace Elements. In Encyclopedia of Food Security and Sustainability; Ferranti, P., Berry, E.M., Anderson, J.R., Eds.; (Food Security, Nutrition and Health); Elsevier: Amsterdam, NL, USA, 2019; Volume 2, pp. 143–160. [Google Scholar] [CrossRef]
- Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. NTR Univ. Health Sci. 2015, 4, 75–85. [Google Scholar] [CrossRef]
- Berlescu, E. Small Encyclopedia of Balneology of Romania; All Publishing House: Bucharest, Romania, 1996. (In Romanian) [Google Scholar]
Parameter | Unit of Measurement | Method Used/Code LCK Cuvette Test | Level of Allowed Concentration [1] |
---|---|---|---|
mg/L | Spectrophotometric/LCK 321/LCW 021 | 0.3 * | |
µg/L | Spectrophotometric/LCW 032/Method 8034 | 0.5∙× 103 | |
µg/L | Spectrophotometric/LCK 529 | 1.0 × 103 | |
Total Cr | µg/L | Spectrophotometric/LCK 100/Method 8024 | 0.05 × 103 |
mg/L | Spectrophotometric/LCK 323/Method 8029 | 5.0 ** | |
mg/L | Spectrophotometric/LCK 311/Method 8207 | According to the specific characteristics of mineral water | |
mg/L | Spectrophotometric/LCK 339/Method 8192 | 50 | |
mg/L | Spectrophotometric/LCK 341/Method 8507 | 0.1 | |
mg/L | Spectrophotometric/LCK 353/Method 8051 | According to the specific characteristics of mineral water | |
mg/L | Determined by calculation/Titrimetric method/SR EN ISO 9963/2-2002 | According to the specific characteristics of mineral water | |
mg/L | Spectrophotometric/LCK 388 | According to the specific characteristics of mineral water |
Element | Mass | Element | Mass | Element | Mass |
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | |||
Na | 23 | Li | 7 | Be | 9 |
K | 39 | Cr | 53 | V | 51 |
Mg | 24 | Mn | 55 | Co | 59 |
Ca | 43 | Ni | 60 | Ga | 69 |
Al | 27 | Cu | 63 | As | 75 |
Fe | 56 | Zn | 66 | Rb | 85 |
B | 11 | Se | 82 | Cs | 133 |
- | - | Sr | 88 | Hg | 202 |
- | - | Ag | 107 | Tl | 205 |
- | - | Cd | 111 | U | 238 |
- | - | Ba | 137 | - | - |
- | - | Pb | 208 | - | - |
Spring | Year (Analyzed) | Chemical Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Cr | ||||||||||||
mg/L | ||||||||||||
1 bis | 1981 | 2.00 | - | - | - | - | 4586.00 | 59.00 | - | - | 3507.50 | 1695.00 |
2006 | - | - | - | - | - | 3630.80 | 62.70 | 14.80 | 0.06 | 3635.60 | 756.80 | |
2021 | 0.057 | 1.15 | 0.20 | 0.02 | 3.50 | 3653.35 | 88.00 | - | 0 | 3125,00 | 1450.00 | |
5 | 1981 | 9.00 | - | - | - | - | 49.00 | 101.00 | - | - | 15.00 | 1909.00 |
2006 | 4.70 | - | - | - | - | 61.20 | 80.30 | 17.02 | 0.10 | 23.20 | 1812.00 | |
2021 | 4.43 | 0.24 | 0.10 | 0.005 | 130.00 | 63.85 | 105.00 | - | 0.01 | 35.00 | 1114.00 | |
10 | 1981 | 3.00 | - | - | - | - | 3803.00 | 58.00 | - | - | 2818.20 | 1686.00 |
2006 | 0.10 | - | - | - | - | 3805.70 | 58.00 | 12.40 | 0.06 | 3025.60 | 616.00 | |
2021 | 0.142 | 1.55 | 0.10 | 0.02 | 2.00 | 4544.00 | 74.00 | 0.11 | 0 | 3320.60 | 1034.00 | |
14 | 1981 | 10.00 | - | - | - | - | 5661.00 | 30.00 | - | - | 4343.00 | 2137.00 |
2006 | - | - | - | - | - | 5367.90 | 32.50 | 19.80 | 0.03 | 5142.70 | 1660.80 | |
2021 | 0.15 | 1.72 | 0.095 | 0.008 | 3.50 | 4301.00 | 40.21 | - | 0 | 3580.68 | 1045.00 | |
15 | 1981 | 5.00 | - | - | - | - | 2291.00 | 4.00 | - | - | 2293.00 | 1732.00 |
2006 | 2.60 | - | - | - | - | 3056.30 | 68.30 | 3.50 | 0.03 | 2875.00 | 1015.00 | |
2021 | 2.89 | 1.65 | 0.06 | 0.01 | 2.60 | 4288.00 | 70.11 | 0.17 | 0 | 4108.80 | 1047.00 | |
S2 | 1981 | 6.00 | - | - | - | - | 113.00 | - | - | - | 2745.00 | 178.00 |
2006 | - | - | - | - | - | 31.00 | 53.70 | 17.30 | 0.03 | 1523.20 | - | |
2021 | 0.05 | - | 0.03 | 0.003 | 0.07 | 95.56 | 70.45 | 0.23 | 0 | 2002.50 | 132.00 | |
SS | 1981 | - | - | - | - | - | - | - | - | - | - | - |
2006 | - | - | - | - | - | - | - | - | - | - | - | |
2021 | 0.02 | 0.04 | 0.02 | 0.03 | 17.00 | 54.32 | 90.23 | 0.52 | 0 | 230.00 | 26.23 |
Spring | 1 bis | 5 | 10 | 14 | 15 | S2 | SS | Mean Recovery Rate % |
---|---|---|---|---|---|---|---|---|
Group 1 [mg/L] | ||||||||
Na * | 2590.00 | 96.87 | 3692.00 | 4438.00 | 3563.00 | 718.50 | 10.71 | 101 |
K | 108.70 | 8.27 | 147.70 | 165.30 | 105.40 | 7.06 | 4.95 | 107 |
Mg | 23.68 | 3.06 | 31.47 | 49.40 | 31.19 | 1.55 | 4.33 | 93 |
Ca | 58.37 | 5.16 | 76.70 | 127.10 | 92.99 | 6.49 | 10.54 | 103 |
Al * | 0.15 | 5.29 | 0.10 | 0.09 | 0.13 | 0.02 | 0.13 | 106 |
Fe * | 0.03 | 3.90 | 0.21 | 0.28 | 1.68 | 0.05 | 0.04 | 101 |
B * | 24.24 | 1.45 | 27.23 | 33.52 | 25.91 | 20.95 | 0.27 | 103 |
Group 2 [μg/L] | ||||||||
Li | 764.60 | 53.77 | 1166.00 | 1390.00 | 740.90 | 119.00 | 29.41 | 106 |
Cr * | 10.62 | 7.375 | 17.93 | 11.09 | 8.113 | 2.844 | 3.422 | 105 |
Mn * | 873.70 | 276.00 | 1103.00 | 1102.00 | 748.10 | 0.485 | 14.36 | 104 |
Ni * | 1.291 | 5.047 | 31.66 | 0.790 | 0.824 | 0.159 | 16.99 | 103 |
Cu * | 73.83 | 3.854 | 111.30 | 98.05 | 63.07 | 27.36 | 15.54 | 94 |
Zn * | 62.67 | 7.856 | 416.40 | 3.713 | 19.76 | 1.863 | 29.27 | 97 |
Se * | 7.667 | 0.687 | 11.20 | 10.24 | 7.096 | 0.540 | 1.133 | 104 |
Sr | 488.00 | 58.38 | 611.10 | 1192.00 | 483.70 | 172.80 | 91.74 | 107 |
Ag | 0.02 | <LOD ** | 0.032 | 0.075 | 0.208 | <LOD ** | <LOD ** | 98 |
Cd * | 0.028 | <LOD ** | 0.03 | 0.03 | 0.03 | 0.01 | 0.219 | 99 |
Ba * | 64.46 | 23.96 | 84.54 | 247.00 | 138.60 | 35.23 | 6.478 | 102 |
Pb * | <LOD ** | <LOD ** | <LOD ** | <LOD ** | <LOD ** | <LOD ** | <LOD ** | 94 |
Group 3 [μg/L] | ||||||||
Be | 0.619 | 1.003 | 0.581 | 0.102 | 0.111 | 0.0032 | 0.129 | 103 |
V | 4.100 | 2.047 | 5.727 | 4.493 | 3.168 | 0.575 | 0.961 | 104 |
Co | 0.461 | 0.541 | 0.182 | 0.188 | 0.414 | 0.030 | 0.165 | 109 |
Ga | 2.450 | 1.280 | 2.856 | 7.861 | 4.207 | 1.284 | 0.222 | 109 |
As * | 3.954 | 0.542 | 2.809 | 3.296 | 2.117 | 0.508 | 0.801 | 107 |
Rb | 278.60 | 24.78 | 357.40 | 346.50 | 203.90 | 4.780 | 7.097 | 102 |
Cs | 6.854 | 0.455 | 7.809 | 5.021 | 1.312 | 0.089 | 0.036 | 104 |
Hg | 0.749 | 0.016 | 0.031 | 0.016 | 1.193 | 0.221 | 0.047 | 97 |
Tl | 0.050 | <LOD ** | <LOD ** | <LOD ** | 0.031 | <LOD ** | 0.034 | 98 |
U * | 0.024 | 0.039 | 0.014 | 0.012 | 0.024 | 0.006 | 0.054 | 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misaila, L.; Barsan, N.; Nedeff, F.M.; Raducanu, D.; Radu, C.; Grosu, L.; Patriciu, O.-I.; Gavrila, L.; Finaru, A.-L. Perspectives for Quality Evaluation of Some Mineral Waters from Slanic Moldova. Water 2022, 14, 2942. https://doi.org/10.3390/w14192942
Misaila L, Barsan N, Nedeff FM, Raducanu D, Radu C, Grosu L, Patriciu O-I, Gavrila L, Finaru A-L. Perspectives for Quality Evaluation of Some Mineral Waters from Slanic Moldova. Water. 2022; 14(19):2942. https://doi.org/10.3390/w14192942
Chicago/Turabian StyleMisaila, Lavinia, Narcis Barsan, Florin Marian Nedeff, Dumitra Raducanu, Cristian Radu, Luminita Grosu, Oana-Irina Patriciu, Lucian Gavrila, and Adriana-Luminita Finaru. 2022. "Perspectives for Quality Evaluation of Some Mineral Waters from Slanic Moldova" Water 14, no. 19: 2942. https://doi.org/10.3390/w14192942
APA StyleMisaila, L., Barsan, N., Nedeff, F. M., Raducanu, D., Radu, C., Grosu, L., Patriciu, O.-I., Gavrila, L., & Finaru, A.-L. (2022). Perspectives for Quality Evaluation of Some Mineral Waters from Slanic Moldova. Water, 14(19), 2942. https://doi.org/10.3390/w14192942