Performance Evaluation of Water Services in Italy: A Meta-Frontier Approach Accounting for Regional Heterogeneities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Sample and Data
2.3. Model Specification and Variables
3. Results and Discussion
3.1. Efficiency Scores
3.2. Determinants of the Efficiency Gap
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
DMU | Group | Meta-Frontier Efficiency Score | Group Frontier Efficiency Score | TGR | DMU | Group | Meta-Frontier Efficiency Score | Group Frontier Efficiency Score | TGR |
---|---|---|---|---|---|---|---|---|---|
WU1 | NCR | 0.703 | 0.703 | 1.000 | WU2 | SRI | 0.855 | 1.000 | 0.855 |
WU5 | NCR | 0.927 | 0.927 | 1.000 | WU3 | SRI | 0.858 | 1.000 | 0.858 |
WU6 | NCR | 0.903 | 0.903 | 1.000 | WU4 | SRI | 0.737 | 0.883 | 0.835 |
WU7 | NCR | 0.976 | 0.976 | 1.000 | WU14 | SRI | 0.871 | 1.000 | 0.871 |
WU8 | NCR | 0.899 | 0.899 | 1.000 | WU15 | SRI | 1.000 | 1.000 | 1.000 |
WU9 | NCR | 0.860 | 0.860 | 1.000 | WU21 | SRI | 1.000 | 1.000 | 1.000 |
WU10 | NCR | 0.989 | 0.989 | 1.000 | WU40 | SRI | 0.715 | 0.933 | 0.767 |
WU11 | NCR | 0.916 | 0.916 | 1.000 | WU41 | SRI | 0.839 | 0.974 | 0.861 |
WU12 | NCR | 0.813 | 0.813 | 1.000 | WU42 | SRI | 0.751 | 1.000 | 0.751 |
WU13 | NCR | 0.797 | 0.797 | 1.000 | WU43 | SRI | 1.000 | 1.000 | 1.000 |
WU16 | NCR | 1.000 | 1.000 | 1.000 | WU44 | SRI | 0.824 | 1.000 | 0.824 |
WU17 | NCR | 0.846 | 0.846 | 1.000 | WU48 | SRI | 1.000 | 1.000 | 1.000 |
WU18 | NCR | 1.000 | 1.000 | 1.000 | WU49 | SRI | 0.905 | 0.905 | 1.000 |
WU19 | NCR | 1.000 | 1.000 | 1.000 | WU51 | SRI | 1.000 | 1.000 | 1.000 |
WU20 | NCR | 1.000 | 1.000 | 1.000 | WU56 | SRI | 1.000 | 1.000 | 1.000 |
WU22 | NCR | 1.000 | 1.000 | 1.000 | WU59 | SRI | 0.847 | 1.000 | 0.847 |
WU23 | NCR | 0.878 | 0.878 | 1.000 | WU62 | SRI | 0.782 | 1.000 | 0.782 |
WU24 | NCR | 1.000 | 1.000 | 1.000 | WU66 | SRI | 1.000 | 1.000 | 1.000 |
WU25 | NCR | 1.000 | 1.000 | 1.000 | WU67 | SRI | 1.000 | 1.000 | 1.000 |
WU26 | NCR | 1.000 | 1.000 | 1.000 | WU68 | SRI | 0.809 | 1.000 | 0.809 |
WU27 | NCR | 1.000 | 1.000 | 1.000 | WU69 | SRI | 0.868 | 1.000 | 0.868 |
WU28 | NCR | 1.000 | 1.000 | 1.000 | WU70 | SRI | 1.000 | 1.000 | 1.000 |
WU29 | NCR | 0.993 | 0.993 | 1.000 | WU71 | SRI | 0.817 | 0.982 | 0.832 |
WU30 | NCR | 0.940 | 0.940 | 1.000 | |||||
WU31 | NCR | 0.878 | 0.878 | 1.000 | |||||
WU32 | NCR | 0.852 | 0.852 | 1.000 | |||||
WU33 | NCR | 0.802 | 0.802 | 1.000 | |||||
WU34 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU35 | NCR | 0.877 | 0.877 | 1.000 | |||||
WU36 | NCR | 0.857 | 0.857 | 1.000 | |||||
WU37 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU38 | NCR | 0.952 | 0.952 | 1.000 | |||||
WU39 | NCR | 0.965 | 0.965 | 1.000 | |||||
WU45 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU46 | NCR | 0.817 | 0.817 | 1.000 | |||||
WU47 | NCR | 0.962 | 0.962 | 1.000 | |||||
WU50 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU52 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU53 | NCR | 0.856 | 0.856 | 1.000 | |||||
WU54 | NCR | 0.836 | 0.836 | 1.000 | |||||
WU55 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU57 | NCR | 0.869 | 0.869 | 1.000 | |||||
WU58 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU60 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU61 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU63 | NCR | 0.882 | 0.882 | 1.000 | |||||
WU64 | NCR | 1.000 | 1.000 | 1.000 | |||||
WU65 | NCR | 0.967 | 0.967 | 1.000 |
References
- Molinos-Senante, M.; Maziotis, A. Understanding performance change of the water industry: How do size and patterns of output mix associate with efficiency? Urban Water J. 2021, 18, 829–839. [Google Scholar] [CrossRef]
- Guerrini, A.; Romano, G.; Leardini, C. Economies of scale and density in the Italian water industry: A stochastic frontier approach. Util. Policy 2018, 52, 103–111. [Google Scholar] [CrossRef]
- Marques, R.C.; De Witte, K. Is big better? On scale and scope economies in the Portuguese water sector. Econ. Model. 2011, 28, 1009–1016. [Google Scholar] [CrossRef]
- Saal, D.S.; Arocena, P.; Maziotis, A.; Triebs, T. Scale and Scope Economies and the Efficient Vertical and Horizontal Configuration of the Water Industry: A Survey of the Literature. Rev. Netw. Econ. 2013, 12, 93–129. [Google Scholar] [CrossRef]
- OECD. Financing a Water Secure Future. OECD Studies on Water; OECD Publishing: Paris, France, 2022; Available online: https://www.oecd.org/environment/resources/policy-highlights-financing-a-water-secure-future.pdf (accessed on 20 July 2022).
- Millerd, F.W. The role of pricing in managing the demand for water. Can. Water Resour. J. 1984, 9, 7–16. [Google Scholar] [CrossRef]
- Porcher, S.; Maziotis, A.; Molinos-Senante, M. The welfare costs of non-marginal water pricing: Evidence from the water only companies in England and Wales. Urban Water J. 2017, 14, 947–953. [Google Scholar] [CrossRef]
- Renzetti, S. Municipal Water Supply and Sewage Treatment: Costs, Prices, and Distortions. Can. J. Econ. 1999, 32, 688–704. [Google Scholar] [CrossRef]
- Rogers, P.; de Silva, R.; Bhatia, R. Water is an economic good: How to use prices to promote equity, efficiency, and sustainability. Water Policy 2002, 4, 1–17. [Google Scholar] [CrossRef]
- lo Storto, C. Efficiency, Conflicting Goals and Trade-Offs: A Nonparametric Analysis of the Water and Wastewater Service Industry in Italy. Sustainability 2018, 10, 919. [Google Scholar] [CrossRef]
- Utilitatis. Blue Book: I Dati Del Servizio Idrico Integrato in Italia. 2022. Available online: https://www.utilitatis.org/wp-content/uploads/2022/03/BBexecutive_2022.pdf (accessed on 29 July 2022).
- ARERA. Relazione Annuale Sullo Stato dei Servizi e Sull’attivita Svolta; ARERA: Milano, Italy, 2019; Volume 1. [Google Scholar]
- ISTAT. Le Statistiche dell’ISTAT Sull’acqua, Anni 2018–2019. Technical Report. 2020. Available online: https://www.istat.it/it/files/2020/03/Le-statistiche-Istat-sull%E2%80%99acqua.pdf (accessed on 29 July 2022).
- ARERA. Relazione Sullo Stato dei Servizi e Sull’attività Svolta Dall’Autorità di Regolazione per Energia, Reti e Ambiente; Doc. CXLI; ARERA: Milano, Italy, 2021; Volume 1. [Google Scholar]
- Utilitatis. I Dati del Blue Book 2022 Sul Servizio Idrico Integrato. Mini Book n. 3 March 2022. Available online: https://www.astrid-online.it/static/upload/mini/minibook_2022.03_focus_servizio_idrico.pdf (accessed on 26 June 2022).
- Invitalia. Lo Stato dei Servizi Idrici. Monitor Idrico; Technical Report 2020; Progetto ReOPEN SPL; Invitalia: Roma, Italy, 2020. [Google Scholar]
- Abbott, M.; Cohen, B. Productivity and efficiency in the water industry. Util. Policy 2009, 17, 233–244. [Google Scholar] [CrossRef]
- Byrnes, J.; Crase, L.; Dollery, B.; Villano, R. The relative economic efficiency of urban water utilities in regional New South Wales and Victoria. Resour. Energy Econ. 2010, 32, 439–455. [Google Scholar] [CrossRef]
- Worthington, A.C. A review of frontier approaches to efficiency and productivity measurement in urban water utilities. Urban Water J. 2014, 11, 55–73. [Google Scholar] [CrossRef]
- Abrate, G.; Erbetta, F.; Fraquelli, G. Public utility planning and cost efficiency in a decentralized regulation context: The case of the Italian integrated water service. J. Prod. Anal. 2011, 35, 227–242. [Google Scholar] [CrossRef]
- Carvalho, P.; Marques, R.C. The influence of the operational environment on the efficiency of water utilities. J. Environ. Manag. 2011, 92, 2698–2707. [Google Scholar] [CrossRef] [PubMed]
- De Witte, K.; Marques, R.C. Incorporating heterogeneity in non-parametric models: A methodological comparison. Int. J. Oper. Res. 2010, 9, 188–204. [Google Scholar] [CrossRef]
- Bruno, C.; Erbetta, F. Benchmarking regulators: A Data Envelopment Analysis of Italian water authorities’ performance. In Handbook of Research on Strategic Performance Management and Measurement Using Data Envelopment Analysis; Osman, I.H., Anouze, A.L., Emrouznejad, A., Eds.; IGI Global: Hershey, PA, USA, 2014; pp. 388–406. [Google Scholar]
- Elba, F.; Patrizii, V. Quality and shared resources in the Italian network system of water services. L’Industria 2018, 3, 457–482. [Google Scholar]
- Romano, G.; Guerrini, A. Measuring and comparing the efficiency of water utility companies: A data envelopment analysis approach. Util. Policy 2011, 19, 202–209. [Google Scholar] [CrossRef]
- Romano, G.; Molinos-Senante, M.; Guerrini, A. Water utility efficiency assessment in Italy by accounting for service quality: An empirical investigation. Util. Policy 2017, 45, 97–108. [Google Scholar] [CrossRef]
- Guerrini, A.; Molinos-Senante, M.; Romano, G. Italian regulatory reform and water utility performance: An impact analysis. Util. Policy 2018, 52, 95–102. [Google Scholar] [CrossRef]
- D’Inverno, G.; Carosi, L.; Romano, G.; Guerrini, A. Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output. Eur. J. Oper. Res. 2018, 269, 24–34. [Google Scholar] [CrossRef]
- Guerrini, A.; Romano, G.; Mancuso, F.; Carosi, L. Identifying the performance drivers of wastewater treatment plants through conditional order-m efficiency analysis. Util. Policy 2016, 42, 20–31. [Google Scholar] [CrossRef] [Green Version]
- lo Storto, C. Measuring the efficiency of the urban integrated water service by parallel network DEA: The case of Italy. J. Clean. Prod. 2020, 276, 123170. [Google Scholar] [CrossRef]
- D’Inverno, G.; Carosi, L.; Romano, G. Environmental sustainability and service quality beyond economic and financial indicators: A performance evaluation of Italian water utilities. Socio-Econ. Plan. Sci. 2021, 75, 100852. [Google Scholar] [CrossRef]
- lo Storto, C. Are Public-Private Partnerships a Source of Greater Efficiency in Water Supply? Results of a Non-Parametric Performance Analysis Relating to the Italian Industry. Water 2013, 5, 2058–2079. [Google Scholar] [CrossRef]
- Guerrini, A.; Romano, G.; Campedelli, B. Economies of Scale, Scope, and Density in the Italian Water Sector: A Two-Stage Data Envelopment Analysis Approach. Water Resour. Manag. 2013, 27, 4559–4578. [Google Scholar] [CrossRef]
- Sherman, H.D.; Zhu, J. Service Productivity Management: Improving Service Performance Using Data Envelopment Analysis (DEA); Springer: New York, NY, USA, 2006. [Google Scholar]
- Hayami, Y.; Ruttan, V. Agricultural productivity differences among countries. Am. Econ. Rev. 1970, 60, 895–911. [Google Scholar]
- Hayami, Y.; Ruttan, V. Factor prices and technical change in agricultural development: The United States and Japan, 1880–1960. J. Polit. Econ. 1970, 78, 1115–1141. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.S.P. Technology gap, efficiency, and a stochastic metafrontier function. Int. J. Bus. Econ. 2002, 1, 87–93. [Google Scholar]
- Battese, G.E.; Rao, D.S.P.; O’Donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Prod. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- lo Storto, C. Ownership structure and the technical, cost, and revenue efficiency of Italian airports. Util. Policy 2018, 50, 175–193. [Google Scholar] [CrossRef]
- Medal-Bartual, A.; Garcia-Martin, C.J.; Sala-Garrido, R. Efficiency analysis of small franchise enterprises through a DEA metafrontier model. Serv. Ind. J. 2012, 32, 2421–2434. [Google Scholar] [CrossRef]
- De Witte, K.; Marques, R.C. Capturing the environment, a metafrontier approach to the drinking water sector. Int. Trans. Oper. Res. 2009, 16, 257–271. [Google Scholar] [CrossRef]
- Sala-Garrido, R.; Molinos-Senante, M.; Hernández-Sancho, F. Comparing the efficiency of wastewater treatment technologies through a DEA metafrontier model. Chem. Eng. J. 2011, 173, 766–772. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Sala-Garrido, R. Cross-national comparison of efficiency for water utilities: A metafrontier approach. Clean Technol. Environ. 2016, 18, 1611–1619. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Maziotis, A.; Sala-Garrido, R. Assessing the relative efficiency of water companies in the English and Welsh water industry: A metafrontier approach. Environ. Sci. Pollut. Res. Int. 2015, 22, 16987–16996. [Google Scholar] [CrossRef] [PubMed]
- Mocholi-Arce, M.; Sala-Garrido, R.; Molinos-Senante, M.; Maziotis, A. Performance assessment of water companies: A metafrontier approach accounting for quality of service and group heterogeneities. Socio-Econ. Plan. Sci. 2021, 74, 100948. [Google Scholar] [CrossRef]
- Portela, M.C.A.S.; Thanassoulis, E.; Horncastle, A.; Maugg, T. Productivity change in the water industry in England and Wales: Application of the meta-Malmquist index. J. Oper. Res. Soc. 2011, 62, 2173–2188. [Google Scholar] [CrossRef]
- Assaf, A.; Barros, C.P.; Josiassen, A. Hotel efficiency: A bootstrapped metafrontier approach. Int. J. Hosp. Manag. 2012, 31, 621–629. [Google Scholar] [CrossRef]
- Huang, C.W.; Ting, C.T.; Lin, C.H.; Lin, C.T. Measuring non-convex metafrontier efficiency in international tourist hotels. J. Oper. Res. Soc. 2013, 64, 250–259. [Google Scholar] [CrossRef]
- Yu, M.M.; Chen, L.H. Evaluation of efficiency and technological bias of tourist hotels by a meta-frontier DEA model. J. Oper. Res. Soc. 2020, 71, 718–732. [Google Scholar] [CrossRef]
- Li, Y.; Chiu, Y.H.; Cen, H.; Lin, T.Y. The operating efficiency of financial holding and nonfinancial holding banks—Epsilou-based measure metafrontier data envelopment analysis model. Manag. Decis. Econ. 2019, 40, 488–499. [Google Scholar] [CrossRef]
- Shah, W.U.H.; Hao, G.; Zhu, N.; Yasmeen, R.; Padd, I.U.H.; Abdul Kamal, M. A cross-country efficiency and productivity evaluation of commercial banks in South Asia: A meta-frontier and Malmquist productivity index approach. PLoS ONE 2022, 17, e0265349. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, J.; Shengnan, S.; Chang, Y.C. A meta-frontier DEA approach to efficiency comparison of carbon reduction technologies on project level. Renew. Sustain. Energy Rev. 2018, 82 Pt 3, 2606–2612. [Google Scholar] [CrossRef]
- Giménez, V.; Keith, J.R.; Prior, D. Do healthcare financing systems influence hospital efficiency? A metafrontier approach for the case of Mexico. Health Care Manag. Sci. 2019, 22, 549–559. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Fu, X. Evaluation of Unified Healthcare Efficiency in China: A Meta-Frontier Non-radial Directional Distance Function Analysis During 2009–2019. Front. Public Health 2022, 10, 876449. [Google Scholar] [CrossRef]
- O’Donell, C.J.; Rao, D.S.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technologies ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Tiedemann, T.; Francksen, T.; Latacz-Lohmann, U. Assessing the performance of German Bundesliga football players: A non-parametric metafrontier approach. Cent. Eur. J. Oper. 2011, 19, 571–587. [Google Scholar] [CrossRef]
- Berg, S.V.; Marques, R.C. Quantitative studies of water and sanitation utilities: A literature survey. Water Policy 2011, 13, 591–606. [Google Scholar] [CrossRef]
- Cetrulo, T.B.; Marques, R.C.; Malheiros, T.F. An analytical review of the efficiency of water and sanitation utilities in developing countries. Water Res. 2019, 161, 372–380. [Google Scholar] [CrossRef]
- Abrate, G.; Bruno, C.; Erbetta, F.; Fraquelli, G.; Giolitti, A. Efficiency in the consolidation of the Italian water sector. Water Resour. Manag. 2017, 31, 2447–2463. [Google Scholar] [CrossRef]
- Vidoli, F. Evaluating the water sector in Italy through a two-stage method using the conditional robust nonparametric frontier and multivariate adaptive regression splines. Eur. J. Oper. Res. 2011, 212, 583–595. [Google Scholar] [CrossRef]
- Antonioli, B.; Filippini, M. The use of a variable cost function in the regulation of the Italian water industry. Util. Policy 2001, 10, 181–187. [Google Scholar] [CrossRef]
- García-Valiñas, M.A.; Muñiz, M.A. Is DEA useful in the regulation of water utilities? A dynamic efficiency evaluation (a dynamic efficiency evaluation of water utilities). Appl. Econ. 2007, 39, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Mocholi-Arce, M.; Sala-Garrido, R.; Molinos-Senante, M.; Maziotis, A. Performance assessment of the Chilean water sector: A network data envelopment analysis approach. Util. Policy 2022, 75, 101350. [Google Scholar] [CrossRef]
- Thanassoulis, E. The use of data envelopment analysis in the regulation of UK water utilities: Water distribution. Eur. J. Oper. Res. 2000, 126, 436–453. [Google Scholar] [CrossRef]
- Thanassoulis, E. Comparative performance measurement in regulation: The case of English and Welsh sewerage services. J. Oper. Res. Soc. 2002, 5, 292–302. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Maziotis, A.; Villegas, A. Estimating technical efficiency and allocative distortions of water companies: Evidence from the English and Welsh water and sewerage industry. Environ. Sci. Pollut. Res. 2020, 27, 35174–35183. [Google Scholar] [CrossRef]
- Sala-Garrido, R.; Mocholí-Arce, M.; Molinos-Senante, M.; Maziotis, A. Measuring operational and quality-adjusted efficiency of Chilean water companies. NPJ Clean Water 2022, 5, 1. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Maziotis, A.; Sala-Garrido, R.; Mocholi-Arce, M. Estimating performance and savings of water leakages and unplanned water supply interruptions in drinking water providers. Resour. Conserv. Recycl. 2022, 186, 106538. [Google Scholar] [CrossRef]
- Benito, B.; Faura, U.; Guillamón, M.D.; Ríos, A.M. The efficiency of public services in small municipalities: The case of drinking water supply. Cities 2019, 93, 95–103. [Google Scholar] [CrossRef]
- Charnes, A.; Clark, C.T.; Cooper, W.W.; Golany, B. A Developmental Study of Data Envelopment Analysis in Measuring the Efficiency of Maintenance Units in the U.S. Air Force. Ann. Oper. Res. 1985, 2, 95–112. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y. Some extensions of techniques to handle non-discretionary factors in data envelopment analysis. J. Product. Anal. 1993, 4, 419–432. [Google Scholar] [CrossRef]
- ACT. Rapporto Sui Tempi di Attuazione Delle Opere Pubbliche—Temi CPT n. 6—Sistema Conti Pubblici Territoriali “Analisi e Monitoraggio Degli Investimenti Pubblici”. Agenzia per la Coesione Territoriale, Roma. 2018. Available online: http://old2018.agenziacoesione.gov.it/it/documentazione/Rapporto_Tempi_OOPP_2018.pdf (accessed on 8 August 2022).
- Peyrache, A.; Rose, C.; Sicilia, G. Variable selection in Data Envelopment Analysis. Eur. J. Oper. Res. 2020, 282, 644–659. [Google Scholar] [CrossRef]
- Adler, N.; Yazhemsky, E. Improving discrimination in Data Envelopment Analysis: PCA-DEA or Variable Reduction. Eur. J. Oper. Res. 2010, 202, 273–284. [Google Scholar] [CrossRef]
- Adler, N.; Golany, B. Including principle component weights to improve discrimination in Data Envelopment Analysis. J. Oper. Res. Soc. 2002, 53, 985–991. [Google Scholar] [CrossRef]
- Ueda, T.; Hoshiai, Y. Application of Principle Component Analysis for parsimonious summarization of DEA inputs and/or outputs. J. Oper. Res. Soc. Jpn. 1997, 40, 466–478. [Google Scholar]
- Sarkis, J. Preparing your data for DEA. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Zhu, J., Cook, W.D., Eds.; Springer: Boston, MA, USA, 2007. [Google Scholar]
- García-Sánchez, I.M. Efficiency Measurement in Spanish Local Government: The Case of Municipal Water Services. Rev. Policy Res. 2006, 23, 355–372. [Google Scholar] [CrossRef]
- Ananda, J. Evaluating the Performance of Urban Water Utilities: Robust Nonparametric Approach. J. Water Resour. Plan. Manag. 2014, 140, 04014021. [Google Scholar] [CrossRef]
- Tourinho, M.; Rosa Santos, P.; Taveira Pinto, F.; Camanho, A.S. Performance assessment of water services in Brazilian municipalities: An integrated view of efficiency and access. Socio-Econ. Plan. Sci. 2022, 79, 101139. [Google Scholar] [CrossRef]
- Pereira, M.A.; Marques, R.C. Technical and Scale Efficiency of the Brazilian Municipalities’ Water and Sanitation Services: A Two-Stage Data Envelopment Analysis. Sustainability 2022, 14, 199. [Google Scholar] [CrossRef]
- Nauges, C.; van den Berg, C. How Natural are Natural Monopolies in the Water Supply and Sewerage Sector? Case Studies from Developing and Transition Economies; World Bank Policy Research Working Paper No. 4137; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Güngör-Demirci, G.; Lee, J.; Keck, J. Assessing the Performance of a California Water Utility Using Two-Stage Data Envelopment Analysis. J. Water Resour. Plan. Manag. 2018, 144, 05018004. [Google Scholar] [CrossRef]
- Coelli, T.J.; Rao, D.S.P.; Battese, G.E. An Introduction to Efficiency and Productivity Analysis; Kluwer: Boston, MA, USA, 1998. [Google Scholar]
- Seifert, S.; Cullmann, A.; von Hirschhausen, C. Technical efficiency and CO2 reduction potentials—An analysis of the German electricity and heat generating sector. Energy Econ. 2016, 56, 9–19. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Lovell, C.A.K. The Measurement of Efficiency of Production; Kluwer-Nijhoff: Boston, MA, USA, 1985. [Google Scholar]
- Villegas, A.; Molinos-Senante, M.; Maziotis, A. Impact of environmental variables on the efficiency of water companies in England and Wales: A double-bootstrap approach. Environ. Sci. Pollut. Res. 2019, 26, 31014–31025. [Google Scholar] [CrossRef] [PubMed]
- Benito, B.; Faura, Ú.; Guillamon, M.D.; Ríos, A.M. Empirical evidence for efficiency in provision of drinking water. J Water Resour. Plan. Manag. 2019, 145, 06019002. [Google Scholar] [CrossRef]
- Ferro, G.; Lentini, E.J.; Mercadier, A.C.; Romero, C.A. Efficiency in Brazil’s water and sanitation sector and its relationship with regional provision, property and the independence of operators. Util. Policy 2014, 28, 42–51. [Google Scholar] [CrossRef]
- Marques, R.C.; Berg, S.; Yane, S. Nonparametric Benchmarking of Japanese Water Utilities: Institutional and Environmental Factors Affecting Efficiency. J. Water Resour. Plan. Manag. 2014, 140, 562–571. [Google Scholar] [CrossRef]
- Walter, M.; Cullmann, A.; von Hirschhausen, C.; Wand, R.; Zschille, M. Quo vadis efficiency analysis of water distribution? A comparative literature review. Util. Policy 2009, 17, 225–232. [Google Scholar] [CrossRef]
- Garcia, S.; Thomas, A. The Structure of Municipal Water Supply Costs: Application to a Panel of French Local Communities. J. Product. Anal. 2001, 16, 5–29. [Google Scholar] [CrossRef]
- Guerrini, A.; Romano, G.; Leardini, C.; Martini, M. The Effects of Operational and Environmental Variables on Efficiency of Danish Water and Wastewater Utilities. Water 2015, 7, 3263–3282. [Google Scholar] [CrossRef]
- Carvalho, P.; Marques, R.C. Computing Economies of Scope Using Robust Partial Frontier Nonparametric Methods. Water 2016, 8, 82. [Google Scholar] [CrossRef]
- Carvalho, P.; Marques, R.C. Computing economies of vertical integration, economies of scope and economies of scale using partial frontier nonparametric methods. Eur. J. Oper. Res. 2014, 234, 292–307. [Google Scholar] [CrossRef]
- lo Storto, C. Benchmarking operational efficiency in the integrated water service provision. Does contract type matter? Benchmarking 2014, 21, 917–943. [Google Scholar] [CrossRef]
Variable | Main Statistics | ||||
---|---|---|---|---|---|
Mean | St.dev. | Max | Min | ||
number of connections | WS | 177,792 | 172,344 | 999,589 | 5067 |
SRI | 208,607 | 238,496 | 999,589 | 8469 | |
NCR | 163,027 | 130,098 | 574,415 | 5067 | |
number of municipalities | WS | 66 | 67 | 345 | 1 |
SRI | 64 | 83 | 345 | 1 | |
NCR | 67 | 59 | 293 | 1 | |
Number of water utilities | |||||
Public | Mixed private-public/ fully private | ||||
type of ownership | WS | 45 | 26 | ||
SRI | 14 | 9 | |||
NCR | 31 | 17 |
Variable | Type | Measurement | Group | Mean | St.dev. | Max | Min |
---|---|---|---|---|---|---|---|
total production cost (I1) | input | € | WS | 68,133,268 | 91,116,496 | 503,180,963 | 2,093,835 |
SRI | 76,648,022 | 112,999,807 | 503,180,963 | 2,093,835 | |||
NCR | 64,053,282 | 79,596,258 | 442,589,659 | 4,675,526 | |||
aqueduct pipeline length (I2) | input | km | WS | 3694 | 3889 | 25,000 | 86 |
SRI | 3886 | 5566 | 25,000 | 86 | |||
NCR | 3602 | 2829 | 12,428 | 99 | |||
sewerage pipeline length (I3) | input | km | WS | 2014 | 2463 | 16,000 | 0 |
SRI | 1890 | 3411 | 16,000 | 0 | |||
NCR | 2073 | 1893 | 9439 | 38 | |||
number of wastewater treatment facilities (I4) | input | unit | WS | 87 | 107 | 500 | 0 |
SRI | 55 | 83 | 337 | 0 | |||
NCR | 103 | 114 | 500 | 1 | |||
water losses (I5) | input | percentage | WS | 40.91 | 11.63 | 77.30 | 19.83 |
SRI | 48.17 | 8.48 | 68.51 | 33.82 | |||
NCR | 37.44 | 11.39 | 77.30 | 19.83 | |||
total production value (O1) | output | € | WS | 77,520,472 | 108,808,044 | 613,872,000 | 2,326,190 |
SRI | 80,412,017 | 118,055,515 | 522,787,134 | 2,326,190 | |||
NCR | 76,134,940 | 105,370,934 | 613,872,000 | 5,297,696 |
I1 | I2 | I3 | I4 | I5 | O1 | |
---|---|---|---|---|---|---|
I1 | 1 (0.000) | |||||
I2 | 0.864 (0.000) | 1 (0.000) | ||||
I3 | 0.880 (0.000) | 0.934 (0.000) | 1 (0.000) | |||
I4 | 0.414 (0.005) | 0.550 (0.000) | 0.503 (0.000) | 1 (0.000) | ||
I5 | 0.119 (1.000) | 0.094 (1.000) | −0.011 (1.000) | 0.005 (1.000) | 1 (0.000) | |
O1 | 0.989 (0.000) | 0.822 (0.000) | 0.842 (0.000) | 0.414 (0.005) | 0.115 (1.000) | 1 (0.000) |
Original Variable | New Variable | |||||
---|---|---|---|---|---|---|
Name | Type | Component Loading | % Variance | Type | Name | Description |
I2 | input | 0.968 | 51.63 | input | I23 | network length |
I3 | input | 0.979 | ||||
I4 | input | 0.911 | 21.76 | input | I4 | number of wastewater treatment facilities |
I5 | input | 1.000 | 25.13 | input | I5 | water losses |
Variable | Sum of Ranks | Mann–Whitney U Value | Z Score | p-Value | |
---|---|---|---|---|---|
NCR | SRI | ||||
total production cost (I1) | 1744 | 812 | 536 | 0.19045 | 0.84930 |
aqueduct pipeline length (I2) | 1715 | 741 | 465 | 1.06281 | 0.28914 |
sewerage pipeline length (I3) * | 1870 | 686 | 410 | 1.73859 | 0.08186 |
number of wastewater treatment facilities (I4) * | 1941 | 615 | 339 | 2.61095 | 0.00906 |
water losses (I5) *** | 1396 | 1160 | 220 | −4.07308 | 0.00001 |
total production value (O1) | 1763 | 793 | 517 | 0.4239 | 0.67448 |
I1/I2 | 1608 | 948 | 432 | −1.46828 | 0.14156 |
I1/I3 * | 1508 | 770 | 332 | −1.71793 | 0.08544 |
I1/I4 ** | 1454 | 824 | 278 | −2.46909 | 0.01352 |
O1/I1 *** | 2102 | 454 | 178 | 4.58913 | 0.00001 |
O1/I2 | 1642 | 914 | 466 | −1.05052 | 0.29372 |
O1/I3 | 1568 | 710 | 392 | −0.88331 | 0.37886 |
O1/I4 ** | 1474 | 804 | 298 | −2.19088 | 0.02852 |
Efficiency Measure | TGR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
With Respect to the Meta-Frontier | With Respect to the Group Frontier | ||||||||||
Mean | St.dev. | Min | 100% Efficient | Mean | St.dev. | Min | 100% Efficient | Mean | St.dev. | Min | |
WS | 0.920 | 0.087 | 0.703 | 40.85 | 0.951 | 0.070 | 0.703 | 53.52 | 0.968 | 0.069 | 0.751 |
SRI | 0.890 | 0.100 | 0.715 | 39.13 | 0.986 | 0.033 | 0.883 | 78.26 | 0.903 | 0.033 | 0.751 |
NCR | 0.934 | 0.077 | 0.703 | 41.67 | 0.934 | 0.077 | 0.703 | 41.67 | 1.000 | 0.000 | 1.000 |
Efficiency | Sum of Ranks | Mann–Whitney U Value | Z Score | p-Value | |
---|---|---|---|---|---|
NCR | SRI | ||||
Meta-frontier efficiency (VRS) | 1849.5 | 706.5 | 430.5 | 1.48671 | 0.13622 |
Group frontier efficiency (VRS) *** | 1491 | 1065 | 315 | −2.90584 | 0.00362 |
TGR *** | 2040 | 516 | 240 | 3.82735 | 0.00012 |
Variable | TGR < 1 | TGR = 1 | ||||||
---|---|---|---|---|---|---|---|---|
Mean | St.dev | Max | Min | Mean | St.dev | Max | Min | |
Meta-frontier efficiency (VRS) | 0.813 | 0.052 | 0.871 | 0.715 | 0.990 | 0.030 | 1.000 | 0.905 |
Group frontier efficiency (VRS) | 0.982 | 0.036 | 1.000 | 0.883 | 0.991 | 0.030 | 1.000 | 0.905 |
Group frontier efficiency (CRS) | 0.948 | 0.051 | 1.000 | 0.875 | 0.986 | 0.032 | 1.000 | 0.905 |
Scale efficiency ratio | 0.965 | 0.041 | 1.000 | 0.890 | 0.995 | 0.015 | 1.000 | 0.953 |
Production cost | 57,167,585 | 72,099,541 | 281,865,384 | 14,107,130 | 105,872,589 | 150,342,701 | 503,180,963 | 2,093,835 |
Production value | 57,194,003 | 75,755,017 | 292,572,118 | 14,342,112 | 110,595,436 | 156,926,045 | 522,787,134 | 2,326,190 |
Average production cost | 393 | 388 | 1666 | 180 | 322 | 125 | 530 | 141 |
Average production value | 407 | 394 | 1693 | 177 | 336 | 123 | 533 | 170 |
Water losses | 46.77 | 9.44 | 68.51 | 33.82 | 49.98 | 7.12 | 56.73 | 34.22 |
Aqueduct pipeline length | 2814 | 3065 | 12,000 | 527 | 5280 | 7706 | 25,000 | 86 |
Sewerage pipeline length | 1461 | 1652 | 6620 | 397 | 2448 | 4918 | 16,000 | 0 |
Number of wastewater facilities | 65 | 90 | 337 | 4 | 41 | 75 | 184 | 0 |
Number of connections | 164,402 | 177,312 | 713,986 | 8469 | 266,074 | 301,047 | 999,589 | 8677 |
Number of municipalities | 63 | 87 | 345 | 10 | 65 | 83 | 255 | 1 |
Connection density (aqueduct) | 74 | 49 | 170 | 14 | 78 | 36 | 115 | 27 |
Connection density (sewerage) | 127 | 63 | 267 | 18 | 194 | 146 | 465 | 62 |
Connection density (wastewater) | 5457 | 6252 | 23,081 | 1052 | 34,967 | 41,726 | 101,234 | 1617 |
Connection density (municipalities) | 3229 | 2098 | 7018 | 847 | 32,670 | 88,745 | 285,000 | 1446 |
Group | Ownership | |
---|---|---|
Public | Mixed Private-Public/ Fully Private | |
TGR < 1 | 8 | 5 |
TGR = 1 | 6 | 4 |
Returns to scale | ||
Increasing | Constant | |
TGR < 1 | 9 | 4 |
TGR = 1 | 2 | 8 |
Variable | Sum of Ranks | Mann–Whitney U Value | Z Score | p-Value | |
---|---|---|---|---|---|
TGR < 1 | TGR = 1 | ||||
Meta-frontier efficiency (VRS) *** | 91 | 185 | 0 | −4.00012 | 0.00001 |
Group frontier efficiency (VRS) | 143.5 | 132.5 | 52.5 | −0.74421 | 0.45931 |
Group frontier efficiency (CRS) * | 124 | 152 | 33 | −1.95355 | 0.05118 |
Scale efficiency ratio ** | 120 | 156 | 29 | −2.20162 | 0.02782 |
Returns to scale type * | 124 | 152 | 33 | −1.95355 | 0.05118 |
Production cost | 1367 | 1048 | 583 | 0.01816 | 0.98404 |
Production value * | 1215 | 1200 | 435 | −1.80963 | 0.07032 |
Average production cost | 168.5 | 131.5 | 63.5 | −0.35132 | 0.72634 |
Average production value | 166 | 134 | 61 | −0.49771 | 0.61708 |
Water losses | 135 | 141 | 44 | −1.27136 | 0.20408 |
Aqueduct pipeline length | 417.5 | 285.5 | 149.5 | 0.55183 | 0.58232 |
Sewerage pipeline length | 366 | 195 | 90 | 1.54812 | 0.12114 |
Number of wastewater facilities * | 187 | 89 | 34 | 1.89153 | 0.05876 |
Number of connections | 613 | 468 | 258 | 0.03324 | 0.97606 |
Number of municipalities | 169.5 | 106.5 | 51.5 | 0.80623 | 0.41794 |
Connection density (aqueduct) | 150 | 126 | 59 | −0.34111 | 0.72786 |
Connection density (sewerage) | 121 | 69 | 30 | −0.74552 | 0.45326 |
Connection density (wastewater) ** | 106 | 84 | 15 | −2.06109 | 0.03942 |
Connection density (municipalities) | 138 | 138 | 47 | −1.08531 | 0.27572 |
Ownership | 157 | 119 | 64 | 0.03101 | 0.97606 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
lo Storto, C. Performance Evaluation of Water Services in Italy: A Meta-Frontier Approach Accounting for Regional Heterogeneities. Water 2022, 14, 2882. https://doi.org/10.3390/w14182882
lo Storto C. Performance Evaluation of Water Services in Italy: A Meta-Frontier Approach Accounting for Regional Heterogeneities. Water. 2022; 14(18):2882. https://doi.org/10.3390/w14182882
Chicago/Turabian Stylelo Storto, Corrado. 2022. "Performance Evaluation of Water Services in Italy: A Meta-Frontier Approach Accounting for Regional Heterogeneities" Water 14, no. 18: 2882. https://doi.org/10.3390/w14182882
APA Stylelo Storto, C. (2022). Performance Evaluation of Water Services in Italy: A Meta-Frontier Approach Accounting for Regional Heterogeneities. Water, 14(18), 2882. https://doi.org/10.3390/w14182882