Assessment of Seasonal Surface Runoff under Climate and Land Use Change Scenarios for a Small Forested Watershed: Upper Tarlung Watershed (Romania)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Methodology Description
3. Results
3.1. Model Performance
3.2. Temperature and Precipitation
3.3. Seasonal Surface Runoff in the Short Term (2020–2039)
3.4. Seasonal Surface Runoff in the Mid Term (2040–2069)
3.5. Seasonal Surface Runoff in the Long Term (2070–2100)
3.6. Surface Runoff Data Analysis
4. Discussion and Conclusions
4.1. Changes in Temperature and Precipitation
4.2. Changes in Seasonal Surface Runoff
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. Technical Sumary. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [CrossRef]
- Cheval, S.; Dumitrescu, A.; Bîrsan, M.V. Variability of the aridity in the South-Eastern Europe over 1961–2050. Catena 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Sfîcă, L.; Croitoru, A.E.; Iordache, I.; Ciupertea, A.F. Synoptic conditions generating heatwaves and warm spells in Romania. Atmosphere 2017, 8, 50. [Google Scholar] [CrossRef]
- Marin, M.; Clinciu, I.; Tudose, N.; Ungurean, C.; Adorjani, A.; Mihalache, A.; Davidescu, A.; Davidescu, Ș.O.; Dinca, L.; Cacovean, H. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environ. Res. 2020, 184, 109330. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Guan, X.; Zhao, Y.; Chen, J.; Mao, W. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 2022, 226, 103957. [Google Scholar] [CrossRef]
- Ducci, F.; De Rogatis, A.; Proietti, R.; Curtu, A.L.; Marchi, M.; Belletti, P. Establishing a baseline to monitor future climate-change-effects on peripheral populations of Abies alba in central Apennines. Ann. For. Res. 2021, 64, 33–66. [Google Scholar] [CrossRef]
- Kutnar, L.; Kermavnar, J.; Pintar, A.M. Climate change and disturbances will shape future temperate forests in the transition zone between Central and SE Europe. Ann. For. Res. 2021, 64, 67–86. [Google Scholar] [CrossRef]
- Kwarteng, E.A.; Gyamfi, C.; Anyemedu, F.O.K.; Adjei, K.A.; Anornu, G.K. Coupling SWAT and bathymetric data in modelling reservoir catchment hydrology. Spat. Inf. Res. 2021, 29, 55–69. [Google Scholar] [CrossRef]
- Tian, J.; Guo, S.; Deng, L.; Yin, J.; Pan, Z.; He, S.; Li, Q. Adaptive optimal allocation of water resources response to future water availability and water demand in the Han River basin, China. Sci. Rep. 2021, 11, 7879. [Google Scholar] [CrossRef]
- Liu, J.; Xue, B.; Yan, Y. The assessment of climate change and land-use influences on the runoff of a typical coastal basin in Northern China. Sustainability 2020, 12, 10050. [Google Scholar] [CrossRef]
- UNDP. Sustainable Development Goals; UNDP: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Progress towards the Sustainable Development Goals Report of the Secretary-General; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Dong, Z.; Zhang, J.; Zhang, K.; Wang, X.; Chen, T. Multi-objective optimal water resources allocation in the middle and upper reaches of the Huaihe River Basin (China) based on equilibrium theory. Sci. Rep. 2022, 12, 6606. [Google Scholar] [CrossRef]
- Munoth, P.; Goyal, R. Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin, India. Int. J. River Basin Manag. 2020, 18, 177–189. [Google Scholar] [CrossRef]
- Sidău, M.R.; Horváth, C.; Cheveresan, M.; Șandric, I.; Stoica, F. Assessing hydrological impact of forested area change: A remote sensing case study. Atmosphere 2021, 12, 817. [Google Scholar] [CrossRef]
- Tan, X.; Liu, S.; Tian, Y.; Zhou, Z.; Wang, Y.; Jiang, J.; Shi, H. Impacts of Climate Change and Land Use/Cover Change on Regional Hydrological Processes: Case of the Guangdong-Hong Kong-Macao Greater Bay Area. Front. Environ. Sci. 2022, 9, 2411–2502. [Google Scholar] [CrossRef]
- Bian, G.; Wang, G.; Chen, J.; Zhang, J.; Song, M. Spatial and seasonal variations of hydrological responses to climate and land-use changes in a highly urbanized basin of Southeastern China. Hydrol. Res. 2021, 52, 506–522. [Google Scholar] [CrossRef]
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Ouyang, L.; Liu, S.; Ye, J.; Liu, Z.; Sheng, F.; Wang, R.; Lu, Z. Quantitative assessment of surface runoff and base flow response to multiple factors in Pengchongjian Small watershed. Forests 2018, 9, 553. [Google Scholar] [CrossRef]
- Aghapour Sabbaghi, M.; Nazari, M.; Araghinejad, S.; Soufizadeh, S. Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agric. Water Manag. 2020, 241, 106323. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W.; Banner, J.L.; Cook, B.I.; Tremaine, D.M.; Wong, C.I.; Mace, R.E.; Gao, H.; Yang, Z.L.; Gonzalez, M.F.; Hoffpauir, R.; et al. Unprecedented Drought Challenges for Texas Water Resources in a Changing Climate: What Do Researchers and Stakeholders Need to Know? Earth’s Futur. 2020, 8, 8. [Google Scholar] [CrossRef]
- Gemechu, T.M.; Zhao, H.; Bao, S.; Yangzong, C.; Liu, Y.; Li, F.; Li, H. Estimation of hydrological components under current and future climate scenarios in guder catchment, upper Abbay Basin, Ethiopia, using the swat. Sustainability 2021, 13, 9689. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Xu, Y.; Wu, L.; Wang, Y.; Han, L. Spatial hydrological responses to land use and land cover changes in a typical catchment of the Yangtze River Delta region. CATENA 2018, 170, 305–315. [Google Scholar] [CrossRef]
- Chilagane, N.; Kashaigili, J.; Mutayoba, E.; Lyimo, P.; Munishi, P.; Tam, C.; Burgess, N. Impact of Land Use and Land Cover Changes on Surface Runoff and Sediment Yield in the Little Ruaha River Catchment. Open J. Mod. Hydrol. 2021, 11, 54–74. [Google Scholar] [CrossRef]
- Phung, Q.A.; Thompson, A.L.; Baffaut, C.; Costello, C.; Sadler, E.J.; Svoma, B.M.; Lupo, A.; Gautam, S. Climate and Land Use Effects on Hydrologic Processes in a Primarily Rain—Fed, Agricultural Watershed. JAWRA J. Am. Water Resour. Assoc. 2019, 55, 1196–1215. [Google Scholar] [CrossRef]
- OECD. Water Resources Allocation: Sharing Risks and Opportunities; OECD: Paris, France, 2015; Volume 14. [Google Scholar]
- Jeyrani, F.; Morid, S.; Srinivasan, R. Assessing basin blue–green available water components under different management and climate scenarios using SWAT. Agric. Water Manag. 2021, 256, 107074. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Fu, B.; Merritt, W.S.; Croke, B.F.W.; Weber, T.R.; Jakeman, A.J. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ. Model. Softw. 2019, 114, 75–97. [Google Scholar] [CrossRef]
- Cakir, R.; Raimonet, M.; Sauvage, S.; Paredes-Arquiola, J.; Grusson, Y.; Roset, L.; Meaurio, M.; Navarro, E.; Sevilla-Callejo, M.; Lechuga-Crespo, J.L.; et al. Hydrological alteration index as an indicator of the calibration complexity ofwater quantity and quality modeling in the context of global change. Water 2020, 12, 115. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modelind and assesssment. Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G.; Gassman, P.W. The soil and water assessment tool: HISTORICAL development, applications, and future research directions invited review series. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool. In Input/Output Documentation; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Narula, K.K.; Nischal, S. Hydrological Modelling of Small Gauged and Ungauged Mountainous Watersheds Using SWAT—A Case of Western Ghats in India. J. Water Resour. Prot. 2021, 13, 455–477. [Google Scholar] [CrossRef]
- Micu, D.M.; Amihaesei, V.A.; Milian, N.; Cheval, S. Recent changes in temperature and precipitation indices in the Southern Carpathians, Romania (1961–2018). Theor. Appl. Climatol. 2021, 144, 691–710. [Google Scholar] [CrossRef]
- Nagavciuc, V.; Scholz, P.; Ionita, M. Hotspots for warm and dry summers in Romania. Nat. Hazards Earth Syst. Sci. 2021, 22, 1347–1369. [Google Scholar] [CrossRef]
- Duvillard, P.A.; Ravanel, L.; Marcer, M.; Schoeneich, P. Recent evolution of damage to infrastructure on permafrost in the French Alps. Reg. Environ. Chang. 2019, 19, 1281–1293. [Google Scholar] [CrossRef]
- Bîrsan, M.-V.; Dumitrescu, A. Snow variability in Romania in connection to large—scale atmospheric circulation. Int. J. Climatol. 2014, 34, 134–144. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manage 2015, 161, 460–468. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Zhao, Y.; Long, Y. Using SWAT Model to Assess the Impacts of Land Use and Climate Changes on Flood in the Upper Weihe River, China. Water 2022, 14, 2098. [Google Scholar] [CrossRef]
- Wu, Y.; He, G.; Ouyang, W.; Huang, L. Differences in soil water content and movement drivers of runoff under climate variations in a high-altitude catchment. J. Hydrol. 2020, 587, 125024. [Google Scholar] [CrossRef]
- Strohmenger, L.; Ackerer, P.; Belfort, B.; Pierret, M.C. Local and seasonal climate change and its influence on the hydrological cycle in a mountainous forested catchment. J. Hydrol. 2022, 610, 127914. [Google Scholar] [CrossRef]
- Kiprotich, P.; Wei, X.; Zhang, Z.; Ngigi, T.; Qiu, F.; Wang, L. Assessing the Impact of Land Use and Climate Change on Surface Runoff Response Using Gridded Observations and SWAT+. Hydrology 2021, 8, 48. [Google Scholar] [CrossRef]
- Tudose, N.C.; Marin, M.; Cheval, S.; Ungurean, C.; Davidescu, S.O.; Tudose, O.N.; Mihalache, A.L.; Davidescu, A.A. SWAT Model Adaptability to a Small Mountainous Forested Watershed in Central Romania. Forests 2021, 12, 860. [Google Scholar] [CrossRef]
- Marin, M.; Clinciu, I.; Tudose, N.C.; Davidescu, S.O.; Constandache, C. Assessing the performance of the Soil and Water Assessment Tool hydrological model for a small mountain forested watershed in the central part of Romania. In Proceedings of the Geolinks Multidisciplinary International Scientific Conference. Conference Proceedings, Novotel, Athens, Greece, 26–29 March 2019; pp. 265–273. [Google Scholar]
- Hibbert, A.R. Forest treatment effects on water yield. In Forest Hydrology; Proceedings of A National Science Foundation Advanced Science Seminar; Pergamon Press: Oxford, UK, 1967; pp. 527–543. [Google Scholar]
- Marin, M.; Clinciu, I.; Tudose, N.; Cheval, S.; Ungurean, C.; Davidescu, Ș.O.; Adorjani, A.; Mihalache, A.; Davidescu, A.; Tudose, O. Simularea impactului schimbărilor climatice și al modificării folosinței terenului asupra proceselor hidrologice din bazinul hidrografic Tărlungul Superior. Rev. Pădurilor 2020, 135, 1–26. [Google Scholar]
- Tudose, N.; Ungurean, C.; Davidescu, Ș.; Cheval, S.; Marin, M. Information Tailored to the Needs of Stakeholders in the Romanian Case Study. Deliverable 4.3. CLISWELN Project. Available online: https://www.hzg.de/ms/clisweln/075105/index.php.en. (accessed on 17 June 2022).
- Marin, M.; Clinciu, I.; Tudose, N.C.; Cheval, S.; Ungurean, C.; Davidescu, Ș.O.; Adorjani, A.; Mihalache, A.L.; Davidescu, A.A.; Tudose, O.N. Analiza previziunilor privind regimul termic și pluvial din bazinul hidrografic Tărlungul Superior în contextul schimbărilor climatice. Rev. Silvic. si Cineg. 2019, 45, 15–21. [Google Scholar]
- Michelangeli, P.A.; Vrac, M.; Loukos, H. Probabilistic downscaling approaches: Application to wind cumulative distribution functions. Geophys. Res. Lett. 2009, 36, L11708. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using quantile mapping—a comparison of methods. Hydrol. Earth Syst. Sci. Discuss. 2012, 9, 6185–6201. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Frankl, A.; Bao, A.; De Maeyer, P. Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China. Water 2018, 10, 1046. [Google Scholar] [CrossRef]
- Tudose, N.C.; Cheval, S.; Ungurean, C.; Broekman, A.; Sanchez-Plaza, A.; Cremades, R.; Mitter, H.; Kropf, B.; Davidescu, S.O.; Dinca, L.; et al. Climate services for sustainable resource management: The water—energy—land nexus in the Tărlung river basin (Romania). Land Use Policy 2022, 119, 106221. [Google Scholar] [CrossRef]
- Gan, T.Y.; Dlamini, E.M.; Biftu, G.F. Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. J. Hydrol. 1997, 192, 81–103. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWAT-CUP Calibration and Uncertainty Programs for SWAT. In Proceedings of the Modsim 2007: International Congress on Modelling and Simulation, Christchurch, New Zealand, 10–13 December 2007; pp. 1603–1609. [Google Scholar]
- Gan, Y.; Duan, Q.; Gong, W.; Tong, C.; Sun, Y.; Chu, W.; Ye, A.; Miao, C.; Di, Z. A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model. Environ. Model. Softw. 2014, 51, 269–285. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. SWAT-CUP. SWAT Calibration and Uncertainty Programs. Available online: https://swat.tamu.edu/media/114860/usermanual_swatcup.pdf (accessed on 17 February 2020).
- Ougahi, J.H.; Cutler, M.E.J.; Cook, S.J. Modelling climate change impact on water resources of the Upper Indus Basin. J. Water Clim. Chang. 2022, 13, 482–504. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, T.; Li, P.; Furtado, K.; Zou, L. Added Value of a Convection Permitting Model in Simulating Atmospheric Water Cycle Over the Asian Water Tower. J. Geophys. Res. Atmos. 2021, 126, e34788. [Google Scholar] [CrossRef]
- Mustățea, M.; Clius, M.; Tudose, N.C.; Cheval, S. An enhanced Machado Index of naturalness. CATENA 2022, 212, 106091. [Google Scholar] [CrossRef]
- Arora, M.; Kumar, R.; Kumar, N.; Malhotra, J. Hydrological Modeling and Streamflow Characterization of Gangotri Glacier. In Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment; Raju, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Apollonio, C.; Bruno, M.F.; Iemmolo, G.; Molfetta, M.G.; Pellicani, R. Flood Risk Evaluation in Ungauged Coastal Areas. Water 2020, 5, 1466. [Google Scholar] [CrossRef]
- Petroselli, A.; Grimaldi, S. Design hydrograph estimation in small and fully ungauged basins: A preliminary assessment of the EBA4SUB framework. J. Flood Risk Manag. 2018, 11, S197–S210. [Google Scholar] [CrossRef]
- Sfîcă, L.; Minea, I.; Hriţac, R.; Amihăesei, V.-A.; Boicu, D. Projected changes of groundwater levels in northeastern Romania according to climate scenarios for 2020–2100. J. Hydrol. Reg. Stud. 2022, 41, 101108. [Google Scholar] [CrossRef]
- Bojariu, R.; Bîrsan, M.-V.; LastNameCică, R.; Velea, L.; Burcea, S.; Dumitrescu, A.; Dascălu, S.I.; Gothard, M.; Dobrinescu, M.; Cărbunaru, F.; et al. Schimbările Climatice—de la Bazele Fizice la Riscuri şi Adaptare; Printech: Bucuresti, Romania, 2015. [Google Scholar]
- Busuioc, A.; Caian, M.; Cheval, S.; Bojariu, R.; Boroneant, C.; Baciu, M.; Dumitrescu, A. Variabilitatea și Schimbarea Climei în România; Pro Universitaria Publisher: Bucharest, Romania, 2010. [Google Scholar]
- Hanus, S.; Hrachowitz, M.; Zekollari, H.; Schoups, G.; Vizcaino, M.; Kaitna, R. Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria. Hydrol. Earth Syst. Sci. 2021, 25, 3429–3453. [Google Scholar] [CrossRef]
- Dahri, Z.H.; Ludwig, F.; Moors, E.; Ahmad, S.; Ahmad, B.; Ahmad, S.; Riaz, M.; Kabat, P. Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios. Sci. Total Environ. 2021, 768, 144467. [Google Scholar] [CrossRef]
- Jenicek, M.; Hnilica, J.; Nedelcev, O.; Sipek, V. Future changes in snowpack will impact seasonal runoff and low flows in Czechia. J. Hydrol. Reg. Stud. 2021, 37, 100899. [Google Scholar] [CrossRef]
- Bîrsan, M.-V.; Zaharia, L.; Chendes, V.; Branescu, E. Recent trends in streamflow in Romania (1976–2005). Rom. Rep. Phys. 2012, 64, 275–280. [Google Scholar]
- Worku, T.; Khare, D.; Tripathi, S.K. Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environ. Earth Sci. 2017, 76, 550. [Google Scholar] [CrossRef]
- Blount, K.; Ruybal, C.J.; Franz, K.J.; Hogue, T.S. Increased water yield and altered water partitioning follow wildfire in a forested catchment in the western United States. Ecohydrology 2020, 13, e2170. [Google Scholar] [CrossRef]
- Piniewski, M.; Szczes’niak, M.; Huang, S.; Kundzewicz, Z.W. Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model. Hydrol. Res. 2018, 49, 303–317. [Google Scholar] [CrossRef]
- Marvel, K.; Cook, B.I.; Bonfils, C.; Smerdon, J.E.; Williams, A.P.; Liu, H. Projected Changes to Hydroclimate Seasonality in the Continental United States. Earth’s Futur. 2021, 9, e2021EF002019. [Google Scholar] [CrossRef]
Adopted Scenario | Climate Change | Current Land Use | Land Use Change by 25% | Land Use Change by 50% |
---|---|---|---|---|
Scenario 1 | ✓ | ✓ | ||
Scenario 2 | ✓ | ✓ | ||
Scenario 3 | ✓ | ✓ |
Parameter | Description | Variation Interval | Fitted Value | |
---|---|---|---|---|
Minimum | Maximum | |||
V__REVAPMN.gw | Threshold depth of water in the shallow aquifer for revap or percolation | 0.000000 | 500.000000 | 134.500000 |
R__OV_N.hru | Manning’s “n” value for overland flow | −0.200000 | 0.000000 | −0.128600 |
R__HRU_SLP.hru | Average slope steepness | 0.000000 | 1.000000 | 0.613000 |
R__SOL_K(..).sol | Saturated hydraulic conductivity | −0.800000 | 0.800000 | −0.776000 |
R__SOL_AWC(..).sol | Available water capacity of the soil layer | −0.200000 | 0.100000 | −0.119900 |
V__GW_REVAP.gw | Groundwater “revap” coefficient | 0.020000 | 0.200000 | 0.025580 |
R__SOL_BD(..).sol | Moist bulk density | −0.500000 | 0.600000 | 0.312900 |
V__ESCO.hru | Soil evaporation compensation factor | 0.000000 | 1.000000 | 0.699000 |
V__LAT_TTIME.hru | Lateral flow travel time | 0.000000 | 180.000000 | 5.940000 |
R__CN2.mgt | SCS runoff curve number | −0.200000 | 0.200000 | −0.016400 |
V__ALPHA_BF.gw | Baseflow alpha factor | 0.000000 | 1.000000 | 0.931000 |
V__GWQMN.gw | Threshold depth of water in the shallow aquifer for return flow | 0.000000 | 5000.000000 | 75.000000 |
Climate Scenarios | REMO4.5 | REMO8.5 | CLM4.5 | CLM8.5 |
---|---|---|---|---|
Mean surface runoff (thousand cm) | 979 a | 930 ab | 933 a | 903 a |
Land Use Scenarios | S1 | S2 | S3 |
---|---|---|---|
Mean surface runoff (thousand cm) | 870 a | 932 ab | 1006 b |
Season | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
Mean surface runoff (thousand cm) | 1178 a | 1197 b | 249 c | 319 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, M.; Clinciu, I.; Tudose, N.C.; Ungurean, C.; Mihalache, A.L.; Martoiu, N.E.; Tudose, O.N. Assessment of Seasonal Surface Runoff under Climate and Land Use Change Scenarios for a Small Forested Watershed: Upper Tarlung Watershed (Romania). Water 2022, 14, 2860. https://doi.org/10.3390/w14182860
Marin M, Clinciu I, Tudose NC, Ungurean C, Mihalache AL, Martoiu NE, Tudose ON. Assessment of Seasonal Surface Runoff under Climate and Land Use Change Scenarios for a Small Forested Watershed: Upper Tarlung Watershed (Romania). Water. 2022; 14(18):2860. https://doi.org/10.3390/w14182860
Chicago/Turabian StyleMarin, Mirabela, Ioan Clinciu, Nicu Constantin Tudose, Cezar Ungurean, Alin Lucian Mihalache, Nicoleta Emilia Martoiu, and Oana Nicoleta Tudose. 2022. "Assessment of Seasonal Surface Runoff under Climate and Land Use Change Scenarios for a Small Forested Watershed: Upper Tarlung Watershed (Romania)" Water 14, no. 18: 2860. https://doi.org/10.3390/w14182860