Next Article in Journal
The Impact of Climate Change on Groundwater Temperature of the Piedmont Po Plain (NW Italy)
Previous Article in Journal
Innovative Vulnerability and Risk Assessment of Urban Areas against Flood Events: Prognosis of Structural Damage with a New Approach Considering Flow Velocity
 
 
Article

Combined Effects of Substrate Depth and Vegetation of Green Roofs on Runoff and Phytoremediation under Heavy Rain

1
Department of Green Technology Convergence, College of Science & Technology, Konkuk University Glocal Campus, 268 Chungwondaero, Chungju-si 27478, Korea
2
Department of Green Technology Convergence, Graduate School, Konkuk University-Glocal Campus, 268 Chungwondaero, Chungju-si 27478, Korea
3
Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University-Glocal Campus, 268 Chungwondaero, Chungju-si 27478, Korea
*
Author to whom correspondence should be addressed.
Academic Editor: Achim A. Beylich
Water 2022, 14(18), 2792; https://doi.org/10.3390/w14182792
Received: 11 July 2022 / Revised: 4 September 2022 / Accepted: 6 September 2022 / Published: 8 September 2022
The quantity and quality of runoff from green roofs have so far been studied using an extensive vegetated roof (substrate depth > 150 mm). However, studies on various substrate depths and vegetation for runoff and phytoremediation in temperate and monsoon climates, where heavy rain is concentrated in a specific season, are limited. Therefore, the purpose of this study was to investigate combined effects of substrate depth and vegetation of an unfertilized green roof on runoff reduction and airborne pollutant purification based on rainfall intensity. A total of 21 plots were implemented on a roof top with three substrate depths (100, 200, and 400 mm), two vegetation s (vegetated or non-vegetated), and control (plot with standard frame only). The runoff reduction increased significantly (p < 0.05) with increasing substrate depth. Vegetated plots had a slightly higher runoff reduction than plots without vegetation. Compared to controls, turbidity and pH tended to increase regardless of vegetation or substrate depth, with the exception of electrical conductivity (EC). However, concentrations of heavy metals (Cu, Zn, Mn, and Cd) in the runoff of vegetated plots were all significantly (p < 0.05) lower than those of un-vegetated plots and controls. These results suggest that as the rainfall intensity increases, the depth of the substrate is more important than vegetation for runoff reduction. In addition, the vegetation can be an effective tool to neutralize acid rain to stabilize pH and effectively reduce EC and heavy metals in the runoff by remediating dissolved air pollutants from rainwater. View Full-Text
Keywords: air quality management; green roofs; green infrastructure; phytoremediation; stormwater runoff reduction air quality management; green roofs; green infrastructure; phytoremediation; stormwater runoff reduction
Show Figures

Figure 1

MDPI and ACS Style

Park, S.-Y.; Oh, D.-K.; Lee, S.-Y.; Yeum, K.-J.; Yoon, Y.-H.; Ju, J.-H. Combined Effects of Substrate Depth and Vegetation of Green Roofs on Runoff and Phytoremediation under Heavy Rain. Water 2022, 14, 2792. https://doi.org/10.3390/w14182792

AMA Style

Park S-Y, Oh D-K, Lee S-Y, Yeum K-J, Yoon Y-H, Ju J-H. Combined Effects of Substrate Depth and Vegetation of Green Roofs on Runoff and Phytoremediation under Heavy Rain. Water. 2022; 14(18):2792. https://doi.org/10.3390/w14182792

Chicago/Turabian Style

Park, Sun-Young, Deuk-Kyun Oh, Sun-Yeong Lee, Kyung-Jin Yeum, Yong-Han Yoon, and Jin-Hee Ju. 2022. "Combined Effects of Substrate Depth and Vegetation of Green Roofs on Runoff and Phytoremediation under Heavy Rain" Water 14, no. 18: 2792. https://doi.org/10.3390/w14182792

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop