Evaluation of Hydrological Rainfall Loss Methods Using Small-Scale Physical Landslide Model
Abstract
:1. Introduction
2. Methods
2.1. Laboratory Landslide Experiments
2.1.1. Data Used for Rainfall Loss Simulations
- Experiment with sandy material with 35° inclination, where surface runoff was observed during the experiment after increasing the rainfall intensity during the second part of the experiment (Sand).
- Experiment with a mixture of sand and 10% kaolin with a 40° inclination, where the initial moisture of the material was relatively high (volumetric water content of approximately 0.2 m3/m3) and surface runoff (and erosion) was observed shortly after the start of the experiment (SK10er).
- Experiment with a mixture of sand and 10% kaolin with a 40° inclination, where the initial moisture content of the material was lower (approximately 0.06 m3/m3) than in the previously selected experiment and where no surface runoff was observed during the experiment (SK10).
2.1.2. Data Used for Investigation of Soil Moisture Changes
- Sandy material for 35° and 40° inclinations with an initial approx. rainfall intensity of 3 L/min;
- Sandy material with 10% kaolin for 35° and 40° inclinations with an initial rainfall intensity of approx. 0.8 L/min.
2.2. Methods for the Evaluation of the Rainfall Losses
2.2.1. Green and Ampt
- Initial content (m3/m3);
- Saturated content (m3/m3);
- Suction (mm);
- Conductivity (mm/h).
2.2.2. Smith Parlange Method
- Initial content (m3/m3);
- Residual content (m3/m3);
- Saturated content (m3/m3);
- Bubbling pressure (mm);
- Pore distribution;
- Conductivity (mm/h).
2.2.3. Initial and Constant Method
- Initial loss (mm);
- Constant rate (mm/h).
2.2.4. Soil Conservation Service (SCS) Method
2.2.5. Horton Infiltration Method
2.3. Evaluation of Five Selected Rainfall Loss Methods Based on the Laboratory Experiments
- The initial rainfall loss methods’ parameters were estimated based on model material characteristics, initial measurements before the start of the experiment and literature information.
- The rainfall losses were estimated using the initial model parameters (previous step) and comparison with the experimental results was made with respect to the timing and occurrence of surface runoff.
- The rainfall loss parameters were calibrated in such a way that the experimental results could be reproduced with respect to the timing of the occurrence or non-occurrence of surface runoff. Evaluation of the calibrated parameters was conducted to see if the calibrated parameters were within a plausible range of the parameters according to the material characteristics. In other words, we were interested in whether the calibrated parameters for sandy material were within a range of parameters for this type of material or whether they correspond to completely different soil types (e.g., clay).
- 0 was used if simulated runoff was completely different from the experimental results (e.g., no runoff was simulated while runoff appeared during the experiment).
- 1 was used if simulations correctly predicted runoff occurrence for one part of the experiment (e.g., HEC-HMS simulations predicted runoff but missed the correct timing in comparison to the actual experimental results).
- 2 was used if simulations correctly predicted runoff (occurrence) and the timing of runoff for one part of the experiment but did not correctly predict runoff for another part of the experiment.
- 3 was used if simulations were completely in accordance with the experimental results.
2.4. Interpretation of Soil Moisture Changes during the Experiments
3. Results and Discussion
3.1. Evaluation of the Rainfall Loss Methods
3.1.1. Initial Model Parameters
3.1.2. Calibrated Model Parameters
3.2. Changes in Soil Moisture during the Experiment with Respect to Slope and Material Characteristics
4. Conclusions
- For some laboratory experiments, the initial rainfall loss method parameters estimated based on the literature provided a relatively good approximation of the experimental results in terms of the occurrence of surface runoff and its timing. In some other cases (SK10er), however, the rainfall–runoff model simulations using initial parameters yielded quite different results from those observed in the laboratory.
- The study results illustrate the importance of model calibration, even in cases where the slope material is homogenous and the material characteristics are well known (the uncertainty in parameter estimation is lower). Hence, it is essential to calibrate the rainfall loss method parameters in order to obtain adequate simulation results. It should be noted that, in some cases, the calibrated parameters differ significantly from the initial model parameters and, to some extent, also from the values that can be derived from the literature.
- None of the tested rainfall loss methods could be declared as a superior one and the performance of the tested methods depends on the specific characteristics of the laboratory experiment. Only in one case (SK10er experiment), for one of the methods, the parameters could not be changed in any way to reproduce the experimental results (calibration was not possible). In all other cases, post-experimental model calibration was successful.
- A comparison of the changes in volumetric water content as a function of slope and material characteristics (Sand and SK10) indicates that, in both cases, similar patterns could be detected for the upper and middle parts of the model, and that the model slope has a relatively significant impact on the changes in volumetric water content as a result of water movement within the model due to gravity effects (settlement of layers in the slope).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikoš, M. After 2000 Stože landslide: Part II—Development in landslide disaster risk reduction policy in Slovenia—Po zemeljskem plazu Stože leta 2000: Del II—Razvoj politike zmanjševanja tveganja nesreč zaradi zemeljskih plazov v Sloveniji. Acta Hydrotech. 2021, 34, 39–59. [Google Scholar] [CrossRef]
- Mikoš, M. After 2000 Stože landslide: Part I—Development in landslide research in Slovenia—Po zemeljskem plazu Stože leta 2000: Del I—Razvoj raziskovanja zemeljskih plazov v Sloveniji. Acta Hydrotech. 2020, 33, 129–153. [Google Scholar] [CrossRef]
- Mikoš, M. Flood hazard in Slovenia and assessment of extreme design floods—Poplavna nevarnost v sloveniji in ocena ekstremnih projektnih poplavnih pretokov. Acta Hydrotech. 2020, 33, 43–59. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, M.S.; Chowdhury, M.E.; Badhon, F.F. Influence of vetiver grass (Chrysopogon zizanioides) on infiltration and erosion control of hill slopes under simulated extreme rainfall condition in Bangladesh. Arab. J. Geosci. 2021, 14, 119. [Google Scholar] [CrossRef]
- Islam, M.S.; Azijul Islam, M. Reduction of Landslide Risk and Water-Logging Using Vegetation. E3S Web Conf. 2018, 65, 06003. [Google Scholar] [CrossRef]
- Jelen, M.; Mikoš, M.; Bezak, N. Karst springs in Slovenia: Trend analysis—Kraški izviri v Sloveniji: Analiza trendov. Acta Hydrotech. 2020, 33, 1–12. [Google Scholar] [CrossRef]
- Sidle, R.C.; Greco, R.; Bogaard, T. Overview of Landslide Hydrology. Water 2019, 11, 148. [Google Scholar] [CrossRef]
- Šraj, M.; Dirnbek, L.; Brilly, M. The influence of effective rainfall on modeled runoff hydrograph|Vplyv efekťvnych zrážok na modelovaný hydrograf odtoku. J. Hydrol. Hydromech. 2010, 58, 3–14. [Google Scholar] [CrossRef]
- HEC HMS. HEC HMS User’s Manual, v. 4.7; US Army Corps of Engineers: Davis, CA, USA, 2021.
- Štajdohar, M.; Brilly, M.; Šraj, M. The influence of sustainable measures on runoff hydrograph from an urbanized drainage area. Acta Hydrotech. 2016, 29, 145–162. [Google Scholar]
- Sapač, K.; Medved, A.; Rusjan, S.; Bezak, N. Investigation of low- and high-flow characteristics of karst catchments under climate change. Water 2019, 11, 925. [Google Scholar] [CrossRef]
- Sezen, C.; Šraj, M.; Medved, A.; Bezak, N. Investigation of rain-on-snow floods under climate change. Appl. Sci. 2020, 10, 1242. [Google Scholar] [CrossRef] [Green Version]
- Bezak, N.; Petan, S.; Kobold, M.; Brilly, M.; Bálint, Z.; Balabanova, S.; Cazac, V.; Csík, A.; Godina, R.; Janál, P.; et al. A catalogue of the flood forecasting practices in the Danube River Basin. River Res. Appl. 2021, 37, 909–918. [Google Scholar] [CrossRef]
- Bezak, N.; Kovačević, M.; Johnen, G.; Lebar, K.; Zupanc, V.; Vidmar, A.; Rusjan, S. Exploring options for flood risk management with special focus on retention reservoirs. Sustainability 2021, 13, 10099. [Google Scholar] [CrossRef]
- Sezen, C.; Bezak, N.; Šraj, M. Hydrological modelling of the karst Ljubljanica River catchment using lumped conceptual model. Acta Hydrotech. 2018, 31, 87–100. [Google Scholar] [CrossRef]
- Addor, N.; Melsen, L.A. Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models. Water Resour. Res. 2019, 55, 378–390. [Google Scholar] [CrossRef]
- Astagneau, P.C.; Thirel, G.; Delaigue, O.; Guillaume, J.H.A.; Parajka, J.; Brauer, C.C.; Viglione, A.; Buytaert, W.; Beven, K.J. Technical note: Hydrology modelling R packages—A unified analysis of models and practicalities from a user perspective. Hydrol. Earth Syst. Sci. 2021, 25, 3937–3973. [Google Scholar] [CrossRef]
- Bai, Y.; Bezak, N.; Sapač, K.; Klun, M.; Zhang, J. Short-Term Streamflow Forecasting Using the Feature-Enhanced Regression Model. Water Resour. Manag. 2019, 33, 4783–4797. [Google Scholar] [CrossRef]
- Bezak, N.; Sodnik, J.; Maček, M.; Jurček, T.; Jež, J.; Peternel, T.; Mikoš, M. Investigation of potential debris flows above the Koroška Bela settlement, NW Slovenia, from hydro-technical and conceptual design perspectives. Landslides 2021, 18, 3891–3906. [Google Scholar] [CrossRef]
- Bezak, N.; Mikoš, M.; Šraj, M. Development of the methodology for the design hydrograph estimation. In Proceedings of the Mišičev Vodarski Dan; VGP Maribor: Maribor, Slovenija, 2021; pp. 50–58. [Google Scholar]
- Delleur, J. The Handbook of Groundwater Engineering; CRC Press: Boca Raton, FL, USA, 1999; ISBN 0-8493-2698-2. [Google Scholar]
- Halwatura, D.; Najim, M.M.M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 2013, 46, 155–162. [Google Scholar] [CrossRef]
- Zema, D.A.; Labate, A.; Martino, D.; Zimbone, S.M. Comparing Different Infiltration Methods of the HEC-HMS Model: The Case Study of the Mésima Torrent (Southern Italy). L. Degrad. Dev. 2017, 28, 294–308. [Google Scholar] [CrossRef]
- Ceola, S.; Arheimer, B.; Baratti, E.; Blöschl, G.; Capell, R.; Castellarin, A.; Freer, J.; Han, D.; Hrachowitz, M.; Hundecha, Y.; et al. Virtual laboratories: New opportunities for collaborative water science. Hydrol. Earth Syst. Sci. 2015, 19, 2101–2117. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Blaschke, A.P.; Broer, M.; Bucher, C.; Carr, G.; Chen, X.; Eder, A.; Exner-Kittridge, M.; Farnleitner, A.; Flores-Orozco, A.; et al. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: A hypothesis-driven observatory. Hydrol. Earth Syst. Sci. 2016, 20, 227–255. [Google Scholar] [CrossRef]
- Sapač, K.; Bezak, N.; Vidmar, A.; Rusjan, S. Nitrate nitrogen (no3-n) export regimes based on high-frequency measurements in the kuzlovec stream catchment|Režimi iznosov nitratnega dušika (no3-n) na podlagi meritev s kratkim časovnim korakom na porečju vodotoka kuzlovec. Acta Hydrotech. 2021, 34, 25–38. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Keizer, J.J.; Santos, L.M.B.; Serpa, D.; Silva, V.; Cerqueira, M.; Ferreira, A.J.D.; Abrantes, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agric. Ecosyst. Environ. 2018, 256, 184–193. [Google Scholar] [CrossRef]
- Song, J.; Wang, J.; Wang, W.; Peng, L.; Li, H.; Zhang, C.; Fang, X. Comparison between different infiltration models to describe the infiltration of permeable brick pavement system via a laboratory-scale experiment. Water Sci. Technol. 2021, 84, 2214–2227. [Google Scholar] [CrossRef]
- Haowen, X.; Yawen, W.; Luping, W.; Weilin, L.; Wenqi, Z.; Hong, Z.; Yichen, Y.; Jun, L. Comparing simulations of green roof hydrological processes by SWMM and HYDRUS-1D. Water Sci. Technol. Water Supply 2020, 20, 130–139. [Google Scholar] [CrossRef]
- Gu, W.-Z.; Liu, J.-F.; Lin, H.; Lin, J.; Liu, H.-W.; Liao, A.-M.; Wang, N.; Wang, W.-Z.; Ma, T.; Yang, N.; et al. Why hydrological maze: The hydropedological trigger? Review of experiments at Chuzhou hydrology laboratory. Vadose Zone J. 2018, 17, 170174. [Google Scholar] [CrossRef]
- Pajalić, S.; Peranić, J.; Maksimović, S.; Čeh, N.; Jagodnik, V.; Arbanas, Ž. Monitoring and Data Analysis in Small-Scale Landslide Physical Model. Appl. Sci. 2021, 11, 5040. [Google Scholar] [CrossRef]
- Jagodnik, V.; Peranić, J.; Arbanas, Ž. Mechanism of Landslide Initiation in Small-Scale Sandy Slope Triggered by an Artificial Rain. In Understanding and Reducing Landslide Disaster Risk: Volume 6 Specific Topics in Landslide Science and Applications; Arbanas, Ž., Bobrowsky, P.T., Konagai, K., Sassa, K., Takara, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 177–184. ISBN 978-3-030-60713-5. [Google Scholar]
- Huang, A.-B.; Lee, J.-T.; Ho, Y.-T.; Chiu, Y.-F.; Cheng, S.-Y. Stability monitoring of rainfall-induced deep landslides through pore pressure profile measurements. Soils Found. 2012, 52, 737–747. [Google Scholar] [CrossRef]
- Hungr, O.; Morgenstern, N.R. Experiments on the flow behaviour of granular materials at high velocity in an open channel. Geotechnique 1984, 34, 405–413. [Google Scholar] [CrossRef]
- Wu, L.Z.; Zhou, Y.; Sun, P.; Shi, J.S.; Liu, G.G.; Bai, L.Y. Laboratory characterization of rainfall-induced loess slope failure. CATENA 2017, 150, 1–8. [Google Scholar] [CrossRef]
- Spolverino, G.; Capparelli, G.; Versace, P. An Instrumented Flume for Infiltration Process Modeling, Landslide Triggering and Propagation. Geosciences 2019, 9, 108. [Google Scholar] [CrossRef]
- Capparelli, G.; Damiano, E.; Greco, R.; Olivares, L.; Spolverino, G. Physical modeling investigation of rainfall infiltration in steep layered volcanoclastic slopes. J. Hydrol. 2020, 580, 124199. [Google Scholar] [CrossRef]
- Park, J.-Y.; Song, Y.-S. Laboratory Experiment and Numerical Analysis on the Precursory Hydraulic Process of Rainfall-Induced Slope Failure. Adv. Civ. Eng. 2020, 2020, 2717356. [Google Scholar] [CrossRef]
- Formetta, G.; Capparelli, G.; Versace, P. Evaluating performance of simplified physically based models for shallow landslide susceptibility. Hydrol. Earth Syst. Sci. 2016, 20, 4585–4603. [Google Scholar] [CrossRef]
- Krøgli, I.K.; Devoli, G.; Colleuille, H.; Boje, S.; Sund, M.; Engen, I.K.; Krogli, I.K.; Devoli, G.; Colleuille, H.; Boje, S.; et al. The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides. Nat. Hazards Earth Syst. Sci. 2018, 18, 1427–1450. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.F. Predicting global landslide spatiotemporal distribution: Integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Int. J. Sediment Res. 2008, 23, 249–257. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Dowling, C.A.; Santi, P.M. Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 2014, 71, 203–227. [Google Scholar] [CrossRef]
- Andres, N.; Badoux, A. The Swiss flood and landslide damage database: Normalisation and trends. J. Flood Risk Manag. 2019, 12, e12510. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Jemec Auflič, M.; Bokal, G.; Kumelj, Š.; Medved, A.; Dolinar, M.; Jež, J. Impact of climate change on landslides in Slovenia in the mid-21st century. Geologija 2021, 64, 159–171. [Google Scholar] [CrossRef]
- Gariano, S.L.; Rianna, G.; Petrucci, O.; Guzzetti, F. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale. Sci. Total Environ. 2017, 596–597, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Bezak, N.; Mikoš, M. Changes in the rainfall event characteristics above the empirical global rainfall thresholds for landslide initiation at the pan-European level. Landslides 2021, 18, 1859–1873. [Google Scholar] [CrossRef]
- Vivoda Prodan, M.; Peranić, J.; Pajalić, S.; Jagodnik, V.; Čeh, N.; Arbanas, Ž. Mechanism of rainfall induced landslides in small-scale models built of different materials. In Proceedings of the 5th Regional Symposium on Landslides in Adriatic-Balkan Region; Peranić, J., Vivoda Prodan, M., Bernat Gazibara, S., Krkač, M., Mihalić Arbanas, S., Arbanas, Ž., Eds.; University of Rijeka: Rijeka, Croatia, 2022. [Google Scholar]
- Peranić, J.; Jagodnik, V.; Čeh, N.; Vivoda Prodan, M.; Pajalić, S.; Arbanas, Ž. Small-scale physical landslide models under 1g infiltration conditions and the role of hydrological monitoring. In Proceedings of the 5th Regional Symposium on Landslides in Adriatic-Balkan Region; Peranić, J., Vivoda Prodan, M., Bernat Gazibara, S., Krkač, M., Mihalić Arbanas, S., Arbanas, Ž., Eds.; University of Rijeka: Rijeka, Croatia, 2022. [Google Scholar]
- Arbanas, Ž.; Peranić, J.; Jagodnik, V.; Vivoda Prodan, M.; Čeh, N.; Pajalić, S.; Plazonić, D. Impact of gravity retaining wall on the stability of a sandy slope in small-scale physical model. In Proceedings of the 5th Regional Symposium on Landslides in Adriatic-Balkan Region; Peranić, J., Vivoda Prodan, M., Bernat Gazibara, S., Krkač, M., Mihalić Arbanas, S., Arbanas, Ž., Eds.; University of Rijeka: Rijeka, Croatia, 2022. [Google Scholar]
- Mein, R.G.; Larson, C.L. Modeling infiltration during a steady rain. Water Resour. Res. 1973, 9, 384–394. [Google Scholar] [CrossRef]
- Heber Green, W.; Ampt, G.A. Studies on Soil Phyics. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Rawls, W.J.; Gish, T.J.; Brakensiek, D.L. Estimating Soil Water Retention from Soil Physical Properties and Characteristics. In Advances in Soil Science: Volume 16; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1991; pp. 213–234. ISBN 978-1-4612-3144-8. [Google Scholar]
- Banasik, K.; Rutkowska, A.; Kohnová, S. Retention and curve number variability in a small agricultural catchment: The probabilistic approach. Water 2014, 6, 1118–1133. [Google Scholar] [CrossRef]
- Rutkowska, A.; Kohnová, S.; Banasik, K.; Szolgay, J.; Karabová, B. Probabilistic properties of a curve number: A case study for small Polish and Slovak Carpathian Basins. J. Mt. Sci. 2015, 12, 533–548. [Google Scholar] [CrossRef]
- Beven, K. The era of infiltration. Hydrol. Earth Syst. Sci. 2021, 25, 851–866. [Google Scholar] [CrossRef]
- Beven, K.; Robert, E. Horton’s perceptual model of infiltration processes. Hydrol. Process. 2004, 18, 3447–3460. [Google Scholar] [CrossRef]
- Akan, O.A. Urban Stormwater Hydrology: A Guide to Engineering Calculations, 1st ed.; CRC Press: Boca Raton, FL, USA, 1993; ISBN 0877629676. [Google Scholar]
- Lavtar, K.; Bezak, N.; Šraj, M. Rainfall-runoff modeling of the nested non-homogeneous sava river sub-catchments in Slovenia. Water 2020, 12, 128. [Google Scholar] [CrossRef]
- Garklavs, G.; Oberg, K.A. Effect of rainfall excess calculations on modeled hydrograph accuracy and unit-hydrograph parameters. JAWRA J. Am. Water Resour. Assoc. 1986, 22, 565–572. [Google Scholar] [CrossRef]
- Bezak, N.; Šraj, M.; Rusjan, S.; Mikoš, M. Impact of the rainfall duration and temporal rainfall distribution defined using the Huff curves on the hydraulic flood modelling results. Geosciences 2018, 8, 69. [Google Scholar] [CrossRef] [Green Version]
Slope Material | Sand | Sand–Kaolin (10%) | Sand–Kaolin (15%) |
---|---|---|---|
Specific gravity, Gs (/) | 2.70 | 2.69 | 2.67 |
D10 (mm) | 0.190 | 0.038 | 0.056 |
D60 (mm) | 0.370 | 0.310 | 0.207 |
Uniformity coefficient, cu (/) | 1.95 | 8.16 | 54.11 |
Minimum void ratio, emin (/) | 0.64 | 0.65 | 0.54 |
Maximum void ratio, emax (/) | 0.91 | 1.21 | 1.43 |
Hydraulic conductivity, ks (m/s) | 1.0 × 10−5 | 6.8 × 10−6 | 3.5 × 10−6 |
Friction angle, ϕ (◦) | 34.9 | 31.3 | 31.8 |
Cohesion, c (kPa) | 0 | 3.9 | 4.4 |
Targeted initial porosity, ni (/) | 0.44 | 0.47 | 0.43 |
Targeted initial relative density, Dr (/) | 0.5 | 0.5 | 0.75 |
Targeted initial water content, wi (%) | 2 | 5 | 8.1 |
Parameter/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
Initial Content (m3/m3) | 0.06 | 0.09 | 0.22 |
Saturated Content (m3/m3) | 0.44 | 0.47 | 0.47 |
Suction (mm) | 50 | 100 | 100 |
Conductivity (mm/h) | 36 | 25 | 25 |
Parameter/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
Initial Content (m3/m3) | 0.06 | 0.09 | 0.22 |
Residual Content (m3/m3) | 0.02 | 0.02 | 0.02 |
Saturated Content (m3/m3) | 0.44 | 0.47 | 0.47 |
Bubbling Pressure (mm) | 50 | 100 | 100 |
Pore Distribution | 0.6 | 0.5 | 0.5 |
Conductivity (mm/h) | 36 | 25 | 25 |
Parameter/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
Initial Loss (mm) | 114 | 114 | 60 |
Constant Rate (mm/h) | 36 | 25 | 25 |
Parameter/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
k (1/h) | 2 | 2 | 2 |
f0 (mm/h) | 127 | 76 | 76 |
fc (mm/h) | 10 | 9 | 9 |
Method/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
Green and Ampt | 2 (3) | 3 (3) | 1 (3) |
Smith Parlange | 2 (3) | 3 (3) | 1 (3) |
Initial and Constant | 3 (3) | 3 (3) | 1 (3) |
SCS Curve Number | 2 (3) | 1 (3) | 3 (3) |
Horton Infiltration | 2 (3) | 0 (3) | 1 (1) |
Parameter/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
Initial Content (m3/m3) | 0.06 | 0.09 | 0.22 |
Saturated Content (m3/m3) | 0.44 | 0.47 | 0.47 |
Suction (mm) | 50 | 100 | 40 |
Conductivity (mm/h) | 60 | 25 | 10 |
Parameter/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
Initial Content (m3/m3) | 0.06 | 0.09 | 0.22 |
Residual Content (m3/m3) | 0.02 | 0.02 | 0.02 |
Saturated Content (m3/m3) | 0.44 | 0.47 | 0.47 |
Bubbling Pressure (mm) | 50 | 100 | 40 |
Pore Distribution | 0.44 | 0.5 | 0.47 |
Conductivity (mm/h) | 69 | 25 | 10 |
Parameter/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
Initial Loss (mm) | 114 | 80 | 8 |
Constant Rate (mm/h) | 36 | 25 | 10 |
SCS Curve Number | Sand | SK10 | SK10er |
---|---|---|---|
Initial parameters | 77 | 86 | 86 |
Calibrated parameters | 32 | 38 | 86 |
Parameter/Experiment | Sand | SK10 | SK10er |
---|---|---|---|
k (1/h) | 2 | 2 | 2 |
f0 (mm/h) | 220 | 80 | 76 |
fc (mm/h) | 60 | 11 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezak, N.; Peranić, J.; Mikoš, M.; Arbanas, Ž. Evaluation of Hydrological Rainfall Loss Methods Using Small-Scale Physical Landslide Model. Water 2022, 14, 2726. https://doi.org/10.3390/w14172726
Bezak N, Peranić J, Mikoš M, Arbanas Ž. Evaluation of Hydrological Rainfall Loss Methods Using Small-Scale Physical Landslide Model. Water. 2022; 14(17):2726. https://doi.org/10.3390/w14172726
Chicago/Turabian StyleBezak, Nejc, Josip Peranić, Matjaž Mikoš, and Željko Arbanas. 2022. "Evaluation of Hydrological Rainfall Loss Methods Using Small-Scale Physical Landslide Model" Water 14, no. 17: 2726. https://doi.org/10.3390/w14172726
APA StyleBezak, N., Peranić, J., Mikoš, M., & Arbanas, Ž. (2022). Evaluation of Hydrological Rainfall Loss Methods Using Small-Scale Physical Landslide Model. Water, 14(17), 2726. https://doi.org/10.3390/w14172726