Investigation of Irrigation Water Requirements for Major Crops Using CROPWAT Model Based on Climate Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Description of the Study Area
2.2. Determination of Irrigation Water Requirements and Irrigation Scheduling
2.3. Temperature, Air Humidity, Sunshine Hours, Wind Speed, and Precipitation
2.4. Crop and Soil Data for the Study Area
2.5. Reference Evapotranspiration and Effective Rainfall
2.6. Crop Water Requirement, Irrigation Water Requirement, and Irrigation Scheduling
3. Results and Discussion
3.1. Reference Evapotranspiration (ETo)
3.2. Effective Rainfall
3.3. Crop Water Requirements (ETc) and Irrigation Water Requirements (IWR)
3.4. Irrigation Scheduling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate change 2007: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Shah, S.A.; Jehanzaib, M.; Yoo, J.; Hong, S.; Kim, T.-W. Investigation of the Effects of Climate Variability, Anthropogenic Activities, and Climate Change on Streamflow Using Multi-Model Ensembles. Water 2022, 14, 512. [Google Scholar] [CrossRef]
- Shah, S.A.; Jehanzaib, M.; Lee, J.-H.; Kim, T.-W. Exploring the Factors Affecting Streamflow Conditions in the Han River Basin from a Regional Perspective. KSCE J. Civ. Eng. 2021, 25, 4931–4941. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. Climate change 2013. The science of climate change. In Contribution of Working Group I to the Fifth Assessment Report of Intergovermental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Panhwar, M.Y.; Panhwar, S.; Keerio, H.A.; Khokhar, N.H.; Shah, S.A.; Pathan, N. Water quality analysis of old and new Phuleli Canal for irrigation purpose in the vicinity of Hyderabad, Pakistan. Water Pract. Technol. 2022, 17, 529–536. [Google Scholar] [CrossRef]
- Abdo, K.S.; Fiseha, B.M.; Rientjes, T.H.M.; Gieske, A.S.M.; Haile, A.T. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia. Hydrol. Process. 2009, 23, 3661–3669. [Google Scholar] [CrossRef]
- Schaake, J.S. From climate to flow. In Climate Change and US Water Resources; Waggoner, P.E., Ed.; John Wiley: New York, NY, USA, 1990. [Google Scholar]
- United Nations Environmental Program (UNEP). Global Environmental Outlook 2000; UNEP: London, UK, 1990. [Google Scholar]
- Taye, M.T.; Haile, M.T.; Fekadu, A.G.; Nakawuka, P. Effect of irrigation water withdrawal on the hydrology of the LakeTana sub-basin. J. Hydrol. Reg. Stud. 2021, 38, 100961. [Google Scholar] [CrossRef]
- Ahmadi, M.; Motamedvaziri, B.; Ahmadi, H.; Moeini, A.; Zehtabiyan, G.R. Assessment of climate change impact on surface runoff, statistical downscaling and hydrological modeling. Phys. Chem. Earth Parts A/B/C 2019, 114, 102800. [Google Scholar] [CrossRef]
- Jamal, Q.K.; Shanthasheela, M.; Sureshverma, R.; Vasanthapriya, S. Factors Influencing the Knowledge and Adoption of Sustainable Sugarcane Initiative (SSI) by the Sugarcane Farmers of Villupuram District. Int. J. Appl. Res. Technol. 2017, 2, 106–112. [Google Scholar]
- Khan, M.J.; Malik, A.; Rahman, M.; Afzaal, M.; Mulk, S. Assessment of Crop Water Requirement for Various Crops in Peshawar, Pakistan Using CROPWAT Model. Irrig. Drain. Syst. 2019, 10, 9. [Google Scholar]
- Dingre, S.K.; Gorantiwar, S.D. Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region. Agric. Water Manag. 2020, 232, 106042. [Google Scholar] [CrossRef]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Martín-Carrasco, F.; Garrote, L.; Iglesias, A.; Mediero, L. Diagnosing causes of water scarcity in complex water resources systems and identifying risk management actions. Water Resour. Manag. 2013, 27, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Janjua, S.; Hassan, I.; Muhammad, S.; Ahmed, S.; Ahmed, A. Water management in Pakistan’s Indus Basin: Challenges and opportunities. Water Policy 2021, 23, 1329–1343. [Google Scholar] [CrossRef]
- Yasmeen, A. Irrigation System of Pakistan World’s Largest Irrigation Source Indus Basin of Pakistan; 2021. [Google Scholar]
- Khan, S.; Hasan, M. Climate Classification of Pakistan. Int. J. Econ. Environ. Geol. 2019, 10, 60–71. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. In United Nations FAO, Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Simth, M.; Raes, D.; Wright, J.L. FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Yrisarry, J.B.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Gabr, M.E.; Fattouh., E.M. Assessment of irrigation management practices using FAO-CROPWAT 8, case studies: Tina Plain and East South El-Kantara, Sinai, Egypt. Ain Shams Eng. J. 2021, 12, 1623–1636. [Google Scholar] [CrossRef]
- Bartolomeu, F.T.; Chimene, C. Efficiency of empirical methods for reference evapotranspiration estimation in the district of Vilankulo, Mozambique. Int. J. Water Res. Environ. Eng. 2019, 11, 76–82. [Google Scholar] [CrossRef]
- Saber, M.; Mokhtar, M.; Bakheit, A.; Elfeky, A.M.; Gameh, M.; Mostafa, A.; Sefelnasr, A.; Kantous, S.A.; Sumi, T.; Hori, T.; et al. An integrated assessment approach for fossil groundwater quality and crop water requirements in the El-Kharga Oasis, Western Desert, Egypt. J. Hydrol. Reg. Stud. 2022, 40, 101016. [Google Scholar] [CrossRef]
- Imrak, S.; Dorota, H. “Evapotranspiration: Potential or Reference”. IFAS Extension. Agric. Biol. Eng. 2017, 256. [Google Scholar]
- Ahmed, H.I.; Liu, J. Evaluating Reference Crop Evapotranspiration (ETo) in the Centre of Guanzhong Basin—Case of Xingping & Wugong, Shaanxi, China. Engineering 2013, 5, 459–468. [Google Scholar]
- Raziei, T.; Pereira, L.S. Estimation of ETo with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agric. Water Manag. 2013, 121, 1–18. [Google Scholar] [CrossRef]
- Surendran, U.; Sushanth, C.M.; Joseph, E.J.; Al-Ansari, N.; Yaseen, Z.M. FAO CROPWAT model-based irrigation requirements for coconut to improve crop and water productivity in Kerala, India. Sustainability 2019, 18, 5132. [Google Scholar] [CrossRef] [Green Version]
- Alemayehu, Y.A.; Steyn, J.M.; Annandale, J.G. FAO-type crop factor determination for irrigation scheduling of hot pepper (capsicum annuum L.) cultivars. S. Afr. J. Plant Soil 2009, 26, 186–194. [Google Scholar] [CrossRef] [Green Version]
- de Azevedo, P.V.; de Souza, C.B.; da Silva, B.B.; da Silva, V.P.R. Water requirements of pineapple crop grown in a tropical environment, Brazil. Agric. Water Manag. 2007, 88, 201–208. [Google Scholar] [CrossRef]
- Zhong, S.Q.; Zhang, W.H.; Lv, J.K.; Wei, C.F. Temporal variation of soil water and its influencing factors in hilly area of Chongqing, China. Int. J. Agric. Biol. Eng. 2017, 7, 47–59. [Google Scholar]
- FAO. Handbook on Climate Information for Farming Communities: What Farmers Need and What Is Available; FAO: Rome, Italy, 2019. [Google Scholar]
- Khan, Z.A.; Imran, M.; Umer, J.; Ahmed, S.; Diemuodeke, O.E.; Abdelatif, A.O. Assessing Crop Water Requirements and a Case for Renewable Energy Powered Pumping System for Wheat, Cotton and Sorghum Crops in Sudan. Energies 2021, 14, 8133. [Google Scholar] [CrossRef]
Crop | Date of Sowing | Date of Harvesting |
---|---|---|
(Date/Month) | (Date/Month) | |
Wheat | 01/11 | 10/03 |
Cotton | 15/04 | 26/10 |
Sugarcane | 15/02 | 14/02 |
Banana | 01/03 | 24/01 |
Month | Decade | Stage | Kc Coefficient | ETc | ETc | Effective Rainfall | Irrigation Required |
---|---|---|---|---|---|---|---|
(mm/day) | mm | mm | mm | ||||
November | 1 | Initial | 0.3 | 1.6 | 16 | 0.9 | 15.1 |
November | 2 | Initial | 0.3 | 1.44 | 14.4 | 0.9 | 13.5 |
November | 3 | Initial | 0.3 | 1.33 | 13.3 | 0.7 | 12.6 |
December | 1 | Development | 0.46 | 1.89 | 18.9 | 0.3 | 18.6 |
December | 2 | Development | 0.76 | 2.82 | 28.2 | 0 | 28.2 |
December | 3 | Mid | 1.06 | 4.28 | 42.8 | 0.2 | 42.6 |
January | 1 | Mid | 1.18 | 4.18 | 41.8 | 0.6 | 41.2 |
January | 2 | Mid | 1.18 | 4.06 | 40.6 | 0.9 | 39.7 |
January | 3 | Mid | 1.18 | 4.94 | 49.4 | 0.9 | 48.5 |
February | 1 | Late | 1.17 | 4.91 | 49.1 | 0.8 | 48.3 |
February | 2 | Late | 0.96 | 4.35 | 43.5 | 0.8 | 42.6 |
February | 3 | Late | 0.7 | 3.57 | 28.6 | 0.8 | 27.8 |
March | 1 | Late | 0.43 | 2.45 | 24.5 | 0.7 | 23.8 |
Total | 411 | 8.5 | 402.5 mm/ crop season |
Month | Decade | Stage | Kc Coefficient | ETc | ETc | Effective Rainfall | Irrigation Required |
---|---|---|---|---|---|---|---|
(mm/Day) | mm | mm | mm | ||||
April | 2 | Initial | 0.35 | 1.91 | 19.1 | 1 | 18.2 |
April | 3 | Initial | 0.35 | 3.45 | 34.5 | 1.4 | 33.1 |
May | 1 | Initial | 0.35 | 3.76 | 37.6 | 1 | 36.6 |
May | 2 | Development | 0.39 | 4.52 | 45.2 | 0.7 | 44.5 |
May | 3 | Development | 0.58 | 7.45 | 74.5 | 1.1 | 73.4 |
June | 1 | Development | 0.78 | 9.25 | 92.5 | 1 | 91.5 |
June | 2 | Development | 0.97 | 11.75 | 117.5 | 1 | 116.5 |
June | 3 | Development | 1.16 | 13.58 | 135.8 | 3.6 | 132.2 |
July | 1 | Mid | 1.29 | 14.65 | 146.5 | 6.4 | 140.2 |
July | 2 | Mid | 1.3 | 14.31 | 143.1 | 8.6 | 134.5 |
July | 3 | Mid | 1.3 | 14.76 | 147.6 | 11 | 136.6 |
August | 1 | Mid | 1.3 | 12.4 | 124 | 14.5 | 109.5 |
August | 2 | Mid | 1.3 | 11.51 | 115.1 | 17.4 | 97.7 |
August | 3 | Mid | 1.3 | 12.39 | 123.9 | 15.1 | 108.8 |
September | 1 | Late | 1.25 | 10.68 | 106.8 | 12.5 | 94.3 |
September | 2 | Late | 1.13 | 9.46 | 94.6 | 11 | 83.6 |
September | 3 | Late | 1.01 | 7.81 | 78.1 | 7.6 | 70.5 |
October | 1 | Late | 0.89 | 6.3 | 63 | 2.9 | 60.1 |
October | 2 | Late | 0.78 | 4.99 | 49.9 | 0 | 49.9 |
October | 3 | Late | 0.68 | 2.41 | 24.1 | 0.1 | 24 |
Total | 1773.5 | 117.9 | 1655.7 mm/ crop season |
Month | Decade | Stage | Kc Coefficient | ETc | ETc | Effective Rainfall | Irrigation Required |
---|---|---|---|---|---|---|---|
(mm/day) | mm | mm | mm | ||||
February | 2 | Init | 0.8 | 1.46 | 14.6 | 0.5 | 14.1 |
February | 3 | Init | 0.4 | 1.64 | 16.4 | 0.8 | 15.6 |
March | 1 | Init | 0.4 | 2.27 | 22.7 | 0.7 | 22 |
March | 2 | Development | 0.42 | 2.6 | 26 | 0.6 | 25.4 |
March | 3 | Development | 0.56 | 4.42 | 44.2 | 0.9 | 43.3 |
April | 1 | Development | 0.73 | 5.93 | 59.3 | 1.3 | 58 |
April | 2 | Development | 0.89 | 8.04 | 80.4 | 1.7 | 78.7 |
April | 3 | Development | 1.05 | 10.3 | 103 | 1.4 | 101.6 |
May | 1 | Development | 1.2 | 12.96 | 129.6 | 1 | 128.6 |
May | 2 | Mid | 1.34 | 15.54 | 155.4 | 0.7 | 154.7 |
May | 3 | Mid | 1.36 | 17.48 | 174.8 | 1.1 | 173.7 |
June | 1 | Mid | 1.36 | 16.14 | 161.4 | 1 | 160.4 |
June | 2 | Mid | 1.36 | 16.48 | 164.8 | 1 | 163.8 |
June | 3 | Mid | 1.36 | 15.92 | 159.2 | 3.6 | 155.6 |
July | 1 | Mid | 1.36 | 15.36 | 153.6 | 6.4 | 147.2 |
July | 2 | Mid | 1.36 | 14.93 | 149.3 | 8.6 | 140.7 |
July | 3 | Mid | 1.36 | 15.41 | 154.1 | 11 | 143.1 |
August | 1 | Mid | 1.36 | 12.94 | 129.4 | 14.5 | 114.9 |
August | 2 | Mid | 1.36 | 12.01 | 120.1 | 17.4 | 102.7 |
August | 3 | Mid | 1.36 | 12.93 | 129.3 | 15.1 | 114.2 |
September | 1 | Mid | 1.36 | 11.61 | 116.1 | 12.5 | 103.6 |
September | 2 | Mid | 1.36 | 11.35 | 113.5 | 11 | 102.5 |
September | 3 | Mid | 1.36 | 10.47 | 104.7 | 7.6 | 97.1 |
October | 1 | Mid | 1.36 | 9.55 | 95.5 | 2.9 | 92.6 |
October | 2 | Mid | 1.36 | 8.71 | 87.1 | 0 | 87.1 |
October | 3 | Mid | 1.36 | 8.77 | 87.7 | 0.3 | 87.4 |
November | 1 | Mid | 1.36 | 7.23 | 72.3 | 0.9 | 71.4 |
November | 2 | Mid | 1.36 | 6.37 | 63.7 | 0.9 | 62.8 |
November | 3 | Late | 1.27 | 5.63 | 56.3 | 0.7 | 55.6 |
December | 1 | Late | 1.21 | 4.95 | 49.5 | 0.3 | 49.2 |
December | 2 | Late | 1.15 | 4.3 | 43 | 0 | 43 |
December | 3 | Late | 1.09 | 4 | 44 | 0.2 | 43.8 |
January | 1 | Late | 1.03 | 3.63 | 36.3 | 0.6 | 35.7 |
January | 2 | Late | 0.97 | 3.32 | 33.2 | 0.9 | 32.3 |
January | 3 | Late | 0.91 | 3.79 | 37.9 | 0.9 | 37 |
February | 1 | Late | 0.84 | 3.54 | 35.4 | 0.8 | 34.6 |
February | 2 | Late | 0.8 | 1.43 | 14.3 | 0.3 | 14.0 |
Total | 3245.4 | 130.1 | 3108 mm/ crop season |
Month | Decade | Stage | Kc Coefficient | ETc | ETc | Effective Rainfall | Irrigation Required |
---|---|---|---|---|---|---|---|
(mm/Day) | mm | mm | mm | ||||
March | 1 | Initial | 0.5 | 2.84 | 28.4 | 0.7 | 27.7 |
March | 2 | Initial | 0.5 | 3.12 | 31.2 | 0.6 | 30.6 |
March | 3 | Initial | 0.5 | 3.59 | 39.5 | 0.9 | 38.6 |
April | 1 | Initial | 0.5 | 4.08 | 40.8 | 1.3 | 39.5 |
April | 2 | Initial | 0.5 | 4.54 | 45.4 | 1.7 | 43.7 |
April | 3 | Initial | 0.5 | 4.92 | 49.2 | 1.4 | 47.8 |
May | 1 | Initial | 0.5 | 5.38 | 53.8 | 1 | 52.8 |
May | 2 | Initial | 0.5 | 5.8 | 58 | 0.7 | 57.3 |
May | 3 | Development | 0.5 | 6.46 | 64.6 | 1.1 | 63.5 |
June | 1 | Development | 0.53 | 6.3 | 63 | 1 | 62 |
June | 2 | Development | 0.57 | 6.9 | 69 | 1 | 68 |
June | 3 | Development | 0.61 | 7.12 | 71.2 | 3.6 | 67.6 |
July | 1 | Development | 0.65 | 7.31 | 73.1 | 6.4 | 66.7 |
July | 2 | Development | 0.68 | 7.53 | 75.3 | 8.6 | 66.7 |
July | 3 | Development | 0.72 | 8.24 | 82.4 | 11 | 71.4 |
August | 1 | Development | 0.77 | 7.31 | 73.1 | 14.5 | 58.6 |
August | 2 | Development | 0.8 | 7.13 | 71.3 | 17.4 | 53.9 |
August | 3 | Development | 0.85 | 8.05 | 80.5 | 15.1 | 65.4 |
September | 1 | Development | 0.89 | 7.59 | 75.9 | 12.5 | 63.4 |
September | 2 | Development | 0.92 | 7.74 | 77.4 | 11 | 66.4 |
September | 3 | Development | 0.96 | 7.44 | 74.4 | 7.6 | 66.8 |
October | 1 | Development | 1 | 7.05 | 70.5 | 2.9 | 67.6 |
October | 2 | Development | 1.04 | 6.69 | 66.9 | 0 | 66.9 |
October | 3 | Development | 1.08 | 6.69 | 69.9 | 0.3 | 69.6 |
November | 1 | Development | 1.12 | 5.98 | 59.8 | 0.9 | 58.9 |
November | 2 | Mid | 1.14 | 5.45 | 54.5 | 0.9 | 53.6 |
November | 3 | Mid | 1.14 | 5.05 | 50.5 | 0.7 | 49.8 |
December | 1 | Mid | 1.14 | 4.65 | 46.5 | 0.3 | 46.2 |
December | 2 | Mid | 1.14 | 4.26 | 42.6 | 0 | 42.6 |
December | 3 | Late | 1.13 | 4.57 | 45.7 | 0.2 | 45.5 |
January | 1 | Late | 1.1 | 3.89 | 38.9 | 0.6 | 38.3 |
January | 2 | Late | 1.07 | 3.67 | 36.7 | 0.9 | 35.8 |
January | 3 | Late | 1.05 | 1.56 | 15.6 | 0.3 | 15.3 |
Total | 1895.7 | 127.1 | 1768.5 mm/ crop season |
Crop | Date of Sowing | Date of Harvesting | Irrigation Required |
---|---|---|---|
(Date/Month) | (Date/Month) | (mm) | |
Wheat | 01/11 | 10/03 | 402.5 |
Cotton | 15/04 | 26/10 | 1655.7 |
Sugarcane | 15/02 | 14/02 | 3108 |
Banana | 01/03 | 24/01 | 1768.5 |
Date | 15 January | 10 March |
Day | 76 | End |
Stage | Mid | End |
Rainfall (mm) | 0 | 0 |
Ks (fraction) | 1 | 1 |
ETa (%) | 100 | 100 |
Depletion (%) | 55 | 60 |
Net Irrigation (mm) | 191.6 | -- |
Gross Irrigation | 273.7 | -- |
Date | 25-May | 19-June | 9-July | 30-July | 25-August | 3-October | 26-October |
Day | 41 | 66 | 86 | 107 | 133 | 172 | End |
Stage | Dev | Dev | Mid | Mid | Mid | End | End |
Rainfall (mm) | 0 | 0 | 0 | 0 | 0 | 1.4 | 0 |
Ks (fraction) | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
ETa (%) | 100 | 100 | 100 | 100 | 100 | 100 | 0 |
Depletion (%) | 66 | 68 | 66 | 67 | 65 | 80 | 28 |
Net Irrigation (mm) | 165.7 | 236.4 | 269.2 | 271.4 | 265.9 | 323.4 | -- |
Gross Irrigation | 236.8 | 337.7 | 384.6 | 387.7 | 379.8 | 462 |
Date | 22-April | 15-May | 2-June | 20-June | 9-July | 30-July | 26-August | 22-September | 23-October | 6-December | 14-February |
Day | 67 | 90 | 108 | 126 | 145 | 166 | 193 | 220 | 251 | 295 | End |
Stage | Dev | Dev | Mid | Mid | Mid | Mid | Mid | Mid | Mid | End | End |
Rainfall (mm) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0 | 0 |
Ks (fraction) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
ETa (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 0 |
Depl. (%) | 65 | 66 | 65 | 67 | 66 | 65 | 67 | 65 | 65 | 65 | 59 |
Net Irrigation (mm) | 284.9 | 287.6 | 283.3 | 292.4 | 287.2 | 284.2 | 291.1 | 284.5 | 283.3 | 282.9 | -- |
Gross Irrigation | 407 | 410.9 | 404.8 | 417.8 | 410.3 | 406 | 415.9 | 406.5 | 404.8 | 404.2 | -- |
Date | 19-March | 5-April | 21-April | 6-May | 20-May | 4-June | 18-June | 2-July | 16-July | 31-July | 19-August | 6-September | 22-September | 9-October | 27-October | 17-November | 12-December | 10-January | 24-January |
Day | 19 | 36 | 52 | 67 | 81 | 96 | 110 | 124 | 138 | 153 | 172 | 190 | 206 | 223 | 241 | 262 | 287 | 316 | End |
Stage | Init | Init | Init | Init | Init | Dev | Dev | Dev | Dev | Dev | Dev | Dev | Dev | Dev | Dev | Mid | Mid | End | End |
Rainfall (mm) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.5 | 0 | 0 | 0 |
Ks (fraction) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
ETa (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Depl. (%) | 55 | 55 | 56 | 56 | 55 | 58 | 56 | 56 | 53 | 53 | 50 | 51 | 49 | 49 | 47 | 47 | 46 | 45 | 18 |
Net Irrigation (mm) | 55 | 62 | 68 | 75 | 79 | 88 | 92 | 96 | 96 | 100 | 102 | 110 | 111 | 116 | 118 | 121 | 121 | 117 | |
Deficit (mm) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Loss (mm) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Gross Irrigation | 78 | 87 | 97 | 100 | 112 | 126 | 131 | 137 | 137 | 144 | 146 | 157 | 158 | 165 | 169 | 174 | 173 | 168 | |
Flow (l/s/ha) | 0.4 | 0.6 | 0.7 | 0.82 | 0.9 | 0.9 | 1.1 | 1.1 | 1.1 | 1.11 | 0.89 | 1.01 | 1.15 | 1.13 | 1.09 | 0.96 | 0.8 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solangi, G.S.; Shah, S.A.; Alharbi, R.S.; Panhwar, S.; Keerio, H.A.; Kim, T.-W.; Memon, J.A.; Bughio, A.D. Investigation of Irrigation Water Requirements for Major Crops Using CROPWAT Model Based on Climate Data. Water 2022, 14, 2578. https://doi.org/10.3390/w14162578
Solangi GS, Shah SA, Alharbi RS, Panhwar S, Keerio HA, Kim T-W, Memon JA, Bughio AD. Investigation of Irrigation Water Requirements for Major Crops Using CROPWAT Model Based on Climate Data. Water. 2022; 14(16):2578. https://doi.org/10.3390/w14162578
Chicago/Turabian StyleSolangi, Ghulam Shabir, Sabab Ali Shah, Raied Saad Alharbi, Sallahuddin Panhwar, Hareef Ahmed Keerio, Tae-Woong Kim, Junaid Ahmed Memon, and Ali Dost Bughio. 2022. "Investigation of Irrigation Water Requirements for Major Crops Using CROPWAT Model Based on Climate Data" Water 14, no. 16: 2578. https://doi.org/10.3390/w14162578