Land Reclamation in a Coastal Metropolis of Saudi Arabia: Environmental Sustainability Implications
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Data Acquisition and Analysis
3.2.1. Land Use and Land Cover (LULC) Classification
3.2.2. Change Detection
4. Results
4.1. LULC Supervised Classification
4.2. Change Detection Results
5. Discussion: Environmental Sustainability Implications of Coastal Land Reclamation in DMA
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Resources Institute (WRI). Pilot Analysis of Globe Ecosystems: Coastal Ecosystems; WRI Publication: Washington, DC, USA, 2001. [Google Scholar]
- Feng, L.; Zhu, X.; Sun, X. Assessing coastal reclamation suitability based on a fuzzy-AHP comprehensive evaluation framework: A case study of Lianyungang, China. Mar. Pollut. Bull. 2014, 89, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, D.; Chen, R.; Meadows, M.E. Building beyond land: An overview of coastal land reclamation in 16 global megacities. Appl. Geogr. 2018, 90, 229–238. [Google Scholar] [CrossRef]
- Pew Oceans Commission (POC). America’s Living Oceans: Charting a Course for Sea Change (POC, Arlington, VA). 2003. Available online: https://www.pewtrusts.org/~/media/assets/2003/06/02/poc_summary.pdf (accessed on 20 May 2022).
- Naser, H.; Hoad, G. An investigation of salinity tolerance and salt secretion in protected mangroves, Bahrain. In Proceedings of the Gulf II: An International Conference—The State of the Gulf Ecosystem: Functioning and Services, Kuwait City, Kuwait, 7–9 February 2011; pp. 7–9. [Google Scholar]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Watson, R. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Naser, H.A. The role of environmental impact assessment in protecting coastal and marine environments in rapidly developing islands: The case of Bahrain, Arabian Gulf. Ocean Coast. Manag. 2015, 104, 159–169. [Google Scholar] [CrossRef]
- Hamza, W.; Munawar, M. Protecting and managing the Arabian Gulf: Past, present and future. Aquat. Ecosyst. Health Manag. 2009, 12, 429–439. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, H.; Huang, Q.; Zhang, Y.; Hu, M.; Niu, Y.; Zhu, J. Characterization and environmental impact analysis of sea land reclamation activities in China. Ocean Coast. Manag. 2016, 130, 128–137. [Google Scholar] [CrossRef]
- Li, F.; Ding, D.; Chen, Z.; Chen, H.; Shen, T.; Wu, Q.; Zhang, C. Change of sea reclamation and the sea-use management policy system in China. Mar. Policy 2020, 115, 103861. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Garner, A.J.; Mann, M.E.; Emanuel, K.A.; Kopp, R.E.; Lin, N.; Alley, R.B.; Pollard, D. Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. Proc. Natl. Acad. Sci. USA 2017, 114, 11861–11866. [Google Scholar] [CrossRef]
- Marsooli, R.; Lin, N.; Emanuel, K.; Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Bianchi, A.; Dottori, F.; Feyen, L. Climatic and socioeconomic controls of future coastal flood risk in Europe. Nat. Clim. Change 2018, 8, 776–780. [Google Scholar] [CrossRef]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Change 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Forman, R.T.; Wu, J. Where to put the next billion people. Nature 2016, 537, 608–611. [Google Scholar] [CrossRef]
- Xu, L.; Ding, S.; Nitivattananon, V.; Tang, J. Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China. Land 2021, 10, 866. [Google Scholar] [CrossRef]
- Reyna, J.; Bera, A.; Cho, H.Y.; Wilson, W.D.; Folorunsho, R.; Green, S.; Tuhumwire, J. Land-Sea Physical Interaction. In The First Global Integrated Marine Assessment: World Ocean Assessment I; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Dano, U.L. An AHP-based assessment of flood triggering factors to enhance resiliency in Dammam, Saudi Arabia. GeoJournal 2021, 87, 1945–1960. [Google Scholar] [CrossRef]
- Dano, U.L. Flash flood impact assessment in Jeddah City: An analytic hierarchy process approach. Hydrology 2020, 7, 10. [Google Scholar] [CrossRef]
- Dawod, G.M.; Mirza, M.N.; Al-Ghamdi, K.A. GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environ. Earth Sci. 2012, 67, 2205–2215. [Google Scholar] [CrossRef]
- Ledraa, T.A.; Al-Ghamdi, A.M. Planning and management issues and challenges of flash flooding disasters in Saudi Arabia: The case of Riyadh City. J. Archit. Plan 2020, 32, 155–171. [Google Scholar]
- Radwan, F.; Alazba, A.A.; Mossad, A. Flood risk assessment and mapping using AHP in arid and semiarid regions. Acta Geophys. 2019, 67, 215–229. [Google Scholar] [CrossRef]
- Youssef, A.M.; Sefry, S.A.; Pradhan, B.; Alfadail, E.A. Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS. Geomat. Nat. Hazards Risk 2016, 7, 1018–1042. [Google Scholar] [CrossRef]
- Almahasheer, H.; Al-Taisan, W.; Mohamed, M.K. Mangrove deterioration in Tarut Bay on the eastern province of the Kingdom of Saudi Arabia. Pakhtunkhwa J. Life Sci 2013, 1, 49–59. [Google Scholar]
- Suzuki, T. Economic and geographic backgrounds of land reclamation in Japanese ports. Mar. Pollut. Bull. 2003, 47, 226–229. [Google Scholar] [CrossRef]
- Hoeksema, R.J. Three stages in the history of land reclamation in The Netherlands. Irrig. Drain. Eng. 2007, 56, 113–126. [Google Scholar] [CrossRef]
- Kennish, M.J. Coastal salt marsh systems in the US: A review of anthropogenic impacts. J. Coast. Res. 2001, 17, 731–748. [Google Scholar]
- Wang, W.; Liu, H.; Li, Y.; Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 2014, 102, 415–425. [Google Scholar] [CrossRef]
- Tian, B.; Wu, W.; Yang, Z.; Zhou, Y. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuar. Coast. Shelf Sci. 2016, 170, 83–90. [Google Scholar] [CrossRef]
- He, Q.; Bertness, M.D.; Bruno, J.F.; Li, B.; Chen, G.; Coverdale, T.C.; Altieri, A.H.; Bai, J.; Sun, T.; Pennings, S.C.; et al. Economic development and coastal ecosystem change in China. Sci. Rep. 2014, 4, 5995. [Google Scholar] [CrossRef]
- Loures, L.; Crawford, P. Democracy in progress: Using public participation in post-industrial landscape (re)-development. WSEAS Trans. Environ. Dev. 2008, 4, 794–803. [Google Scholar]
- Zhang, Y.; Chen, R.; Wang, Y. Tendency of land reclamation in coastal areas of Shanghai from 1998 to 2015. Land Use Policy 2020, 91, 104370. [Google Scholar] [CrossRef]
- Suo, A.; Zhang, M. Sea areas reclamation and coastline change monitoring by remote sensing in coastal zone of Liaoning in China. J. Coast. Res. 2015, 73, 725–729. [Google Scholar] [CrossRef]
- Wang, X.G.; Su, F.Z.; Zhang, J.J.; Cheng, F.; Hu, W.Q.; Ding, Z. Construction land sprawl and reclamation in the Johor River Estuary of Malaysia since 1973. Ocean Coast. Manag. 2019, 171, 87–95. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.; Meadows, M.E.; Choi, Y.R.; Banerjee, A.; Zilong, X. Mapping trajectories of coastal land reclamation in nine deltaic megacities using Google Earth Engine. Remote Sens. 2019, 11, 2621. [Google Scholar] [CrossRef]
- Meng, W.; Hu, B.; He, M.; Liu, B.; Mo, X.; Li, H.; Zhang, Y. Temporal-spatial variations and driving factors analysis of coastal reclamation in China. Estuar. Coast. Shelf Sci. 2017, 191, 39–49. [Google Scholar] [CrossRef]
- Liu, T.-K.; Huang, H.-Y.; Hsu, S.-L. Saving the critically endangered Chinese white dolphin in Taiwan: Debate regarding the designation of an MPA. Mar. Policy 2015, 61, 113–120. [Google Scholar] [CrossRef]
- Yang, H.Y.; Chen, B.; Barter, M.; Piersma, T.; Zhou, C.F.; Li, F.S.; Zhang, Z.W. Impacts of tidal land reclamation in Bohai Bay, China: Ongoing losses of critical. Yellow Sea waterbird staging and wintering sites. Bird Conserv. Int. 2011, 21, 241–259. [Google Scholar] [CrossRef]
- Bai, Q.; Chen, J.; Chen, Z.; Dong, G.; Dong, J.; Dong, W.; Fu, V.W.K.; Han, Y.; Lu, G.; Li, J. Identification of coastal wetlands of international importance for waterbirds: A review of China Coastal Waterbird Surveys 2005-2013. Avian Res. 2015, 6, 12. [Google Scholar] [CrossRef]
- Wu, Q.; Tam, N.F.Y.; Leung, J.Y.S.; Zhou, X.; Jie, F.; Bo, Y.; Huang, X.; Xia, L. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China. Ecotoxicol. Environ. Saf. 2014, 104, 143–151. [Google Scholar] [CrossRef]
- Li, H.; Chen, G. Genetic variation within the endangered mangrove species Sonneratia paracaseolaris (Sonneratiaceae) in China detected by inter-simple sequence repeats analysis. Biochem. Syst. Ecol. 2009, 37, 260–265. [Google Scholar] [CrossRef]
- Jian, S.; Ban, J.; Ren, H.; Yan, H. Low genetic variation detected within the widespread mangrove species Nypa fruticans (Palmae) from Southeast Asia. Aquat. Bot. 2010, 92, 23–27. [Google Scholar] [CrossRef]
- Nanfang Metropolis Daily News. A Serious Foundation Pit Slope Sliding Accident Resulted from the Soft Soil—A Construction Site at Qianhai Zone in Shenzhen. 2015. Available online: http://sz.house.qq.com/a/20150712/008933_1.htm (accessed on 2 July 2021).
- Reclaimed Land Geological Research (RLGR). Ground failures on reclaimed land during the 2011 Tohoku earthquake: A case study in urayasu city, Japan. Quat. Int. 2016, 397, 555–562. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Huang, Q. Analysis of landscape fragmentation processes and driving forces in wetlands in arid areas: A case study of the middle reaches of the Heihe River, China. Ecol. Indic. 2014, 46, 240–252. [Google Scholar] [CrossRef]
- Jiang, T.T.; Pan, J.F.; Pu, X.M.; Wang, B.; Pan, J.J. Current status of coastal wetlands in China: Degradation, restoration, and future management. Estuarine. Coast. Shelf Sci. 2015, 164, 265–275. [Google Scholar] [CrossRef]
- CU. New Global Maps Detail Human-Caused Ocean Acidification, the Earth Institute (Columbia University). 2014. Available online: http://www.earthinstitute.columbia.edu/articles/view/3211 (accessed on 2 July 2021).
- Guo, H.; Jiao, J.J. Impact of coastal land reclamation on ground water level and the sea water interface. Ground Water 2007, 45, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Kouping, C.; Jiao, J.J. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas: A case study in Shenzhen, China. Environ. Pollut. 2008, 151, 576–584. [Google Scholar]
- Li, J.; Pu, L.; Zhu, M.; Zhang, J.; Li, P.; Dai, X.; Xu, Y.; Liu, L. Evolution of soil properties following reclamation in coastal areas: A review. Geodermas 2014, 226, 130–139. [Google Scholar] [CrossRef]
- Ding, Y.; Wei, H. Modeling the impact of land reclamation on storm surges in Bohai Sea, China. Nat. Hazards 2017, 85, 559–573. [Google Scholar] [CrossRef]
- Gao, G.D.; Wang, X.H.; Bao, X.W. Land reclamation and its impact on tidal dynamics in Jiaozhou Bay, Qingdao, China. Estuar. Coast. Shelf Sci. 2014, 151, 285–294. [Google Scholar] [CrossRef]
- Song, D.; Wang, X.H.; Zhu, X.; Bao, X. Modeling studies of the far-field effects of tidal flat reclamation on tidal dynamics in the East China Seas. Estuar. Coast. Shelf Sci. 2013, 133, 147–160. [Google Scholar] [CrossRef]
- Benassai, G.; Di Paola, G.; Aucelli, P.P.C. Coastal risk assessment of a micro-tidal littoral plain in response to sea-level rise. Ocean Coast. Manag. 2015, 104, 22–35. [Google Scholar] [CrossRef]
- Huang, Z.; Zong, Y.; Zhang, W. Coastal inundation due to sea-level rise in the Pearl River Delta, China. Nat. Hazards 2004, 33, 247–264. [Google Scholar] [CrossRef]
- Neumann, J.E.; Emanuel, K.A.; Ravela, S.; Ludwig, L.C.; Verly, C. Risks of coastal storm surge and the effect of sea-level rise in the Red River Delta, Vietnam. Sustainability 2015, 7, 6553–6572. [Google Scholar] [CrossRef]
- Rizzi, J.; Torresan, S.; Zabeo, A.; Critto, A.; Tosoni, A.; Tomasin, A.; Marcomini, A. Assessing storm surge risk under future sea-level rise scenarios: A case study in the North Adriatic coast. J. Coast. Conserv. 2017, 21, 453–471. [Google Scholar] [CrossRef]
- Du, S.; Scussolini, P.; Ward, P.J.; Zhang, M.; Wen, J.; Wang, L.; Aerts, J.C. Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai. Glob. Environ. Change 2020, 61, 102037. [Google Scholar] [CrossRef]
- Wang, J.; Gao, W.; Xu, S.; Yu, L. Evaluation of the combined risk of sea-level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Clim. Change 2012, 115, 537–558. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.E.; Hu, X.M.; Xu, S.Y.; Wang, J.; Li, Z.H.; Gan, F.B. Multiple scenario analyses forecasting the confounding impacts of sea-level rise and tides from storm induced coastal flooding in the city of Shanghai, China. Environ. Earth Sci. 2011, 63, 407–414. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Wang, J.; Xu, S. Modelling the combined impacts of sea-level rise and land subsidence on storm tides induced flooding of the Huangpu River in Shanghai, China. Clim. Change 2013, 119, 919–932. [Google Scholar] [CrossRef]
- Abou-Korin, A.A.; Al-Shihri, F.S. Rapid urbanization and sustainability in Saudi Arabia: The case of Dammam metropolitan area. J. Sust. Dev. 2015, 8, 52. [Google Scholar]
- Alqahtany, A. Developing a consensus-based measures for housing delivery in Dammam metropolitan area, Saudi Arabia. Int. J. Hous. Mark. Anal. 2019, 12, 226–245. [Google Scholar] [CrossRef]
- AlQahtany, A.M.; Abubakar, I.R. Public perception and attitudes to disaster risks in a coastal metropolis of Saudi Arabia. Intl. J. Disaster Risk Reduct. 2020, 44, 101422. [Google Scholar] [CrossRef]
- Local Weather. Dammam Climate History, N.D. Available online: http://www.myweather2.com/City-Town/Saudi-Arabia/Dammam/climate-profile.aspx (accessed on 5 January 2020).
- MMRA; UN-Habitat. Dammam City Profile: Future Saudi Cities Programme; Ministry of Municipal and Rural Affairs: Riyadh, Saudi Arabia, 2019; Available online: https://unhabitat.org/sites/default/files/2020/04/dammam.pdf (accessed on 18 June 2021).
- Alharbi, T.; El-Sorogy, A. Assessment of metal contamination in coastal sediments of Al-Khobar area, Arabian Gulf, Saudi Arabia. J. Afr. Earth Sci. 2017, 129, 458–468. [Google Scholar] [CrossRef]
- Dano, U.L.; AlQahtany, A.M. Issues undermining public transport utilization in Dammam city, Saudi Arabia: An expert-based analysis. J. Sustain. Sci. Manag. 2019, 14, 155–169. [Google Scholar]
- Alhowaish, A.K. Eighty years of urban growth and socioeconomic trends in Dammam Metropolitan Area, Saudi Arabia. Habitat Int. 2015, 50, 90–98. [Google Scholar] [CrossRef]
- Al-Shihri, F.S. Impacts of large-scale residential projects on urban sustainability in Dammam Metropolitan Area, Saudi Arabia. Habitat Int. 2016, 56, 201–211. [Google Scholar] [CrossRef]
- USGS. EarthExplorer; General Information Product 136; U.S. Geological Survey: Reston, VA, USA, 2012.
- USGS. Landsat 7 (L7) Data Users Handbook; LSDS-1927 Version 2.0; U.S. Geological Survey (USGS): Sioux Falls, SD, USA, 2019. Available online: https://www.usgs.gov/media/files/landsat-7-data-users-handbook (accessed on 26 December 2020).
- USGS. Landsat 8 (L8) Data Users Handbook; LSDS-1574 Version 5.0; U.S. Geological Survey (USGS): Sioux Falls, SD, USA, 2019. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 26 December 2020).
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Liu, Y.; Lu, S.; Lu, X.; Wang, Z.; Chen, C.; He, H. Classification of urban hyperspectral remote sensing imagery based on optimized spectral angle mapping. J. Indian Soc. Remote Sens. 2019, 47, 289–294. [Google Scholar] [CrossRef]
- Deliry, S.I.; Avdan, Z.Y.; Avdan, U. Extracting urban impervious surfaces from Sentinel-2 and Landsat-8 satellite data for urban planning and environmental management. Envi. Sci. Pollut. Res. 2021, 28, 6572–6586. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogram. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Dano, U.L.; Balogun, A.L.; Abubakar, I.R.; Aina, Y.A. Transformative urban governance: Confronting urbanization challenges with geospatial technologies in Lagos, Nigeria. GeoJournal 2020, 85, 1039–1056. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Mu’azu, N.D. Household attitudes toward wastewater recycling in Saudi Arabia. Util. Policy 2022, 76, 101372. [Google Scholar] [CrossRef]
- Leal Filho, W.; Abubakar, I.R.; Nunes, C.; Platje, J.; Ozuyar, P.G.; Will, M.; Nagy, G.J.; Al-Amin, A.Q.; Hunt, J.D.; Li, C. Deep seabed mining: A note on some potentials and risks to the sustainable mineral extraction from the oceans. J. Mar. Sci. Eng. 2021, 9, 521. [Google Scholar] [CrossRef]
- Akbar, N.; Abubakar, I.R.; Bouregh, A.S. Fostering Urban Sustainability through the Ecological Wisdom of Traditional Settlements. Sustainability 2020, 12, 10033. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, B.X.; Wang, P.; Chen, J.; Yang, L.; Xiao, K.; Zhang, X. Hydrogeochemical evolution and heavy metal contamination in groundwater of a reclaimed land on Zhoushan Island. Water 2018, 10, 316. [Google Scholar] [CrossRef]
- Mancini, C.P.; Lollai, S.; Volpi, E.; Fiori, A. Flood modeling and groundwater flooding in urbanized reclamation areas: The case of Rome (Italy). Water 2020, 12, 2030. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Tian, B.; Huang, Y.; Zhou, Y.; Zhang, T. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuar. Coast. Shelf Sci. 2018, 210, 153–161. [Google Scholar] [CrossRef]
- Ghazali, N.H.M. Coastal erosion and reclamation in Malaysia. Aquat. Ecosyst. Health Manag. 2006, 9, 237–247. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.; Meadows, M.E.; Banerjee, A. Gaining or losing ground? Tracking Asia’s hunger for ‘new’ coastal land in the era of sea level rise. Sci. Total Environ. 2020, 732, 139–290. [Google Scholar] [CrossRef]
- Feng, T.; Xu, N. Satellite-based monitoring of annual coastal reclamation in Shenzhen and Hong Kong since the 21st Century: A comparative study. J. Mar. Sci. Eng. 2021, 9, 48. [Google Scholar] [CrossRef]
- Turisno, B.E.; Dew, I.G.A.G.S. Impact of coastal reclamation on environmental sustainability and tourism-based economy on the north coast of Java. Int. J. Criminol. Sociol. 2021, 10, 695–702. [Google Scholar] [CrossRef]
LANDSAT 7 ETM+ | LANDSAT 8 OLI/TIRS | ||||
---|---|---|---|---|---|
Band | Wavelength (μm) | Spatial Resolution (m) | Band | Wavelength (μm) | Spatial Resolution (m) |
Band 1–blue | 0.45–0.52 | Band 1–coastal aerosol | 0.43–0.45 | ||
Band 2–green | 0.52–0.60 | 30 | Band 2–blue | 0.45–0.51 | |
Band 3–red | 0.63–0.69 | Band 3–green | 0.53–0.59 | ||
Band 4–Near Infrared | 0.77–0.90 | Band 4–red | 0.64–0.67 | ||
Band 5–Short-wave Infrared | 1.55–1.75 | Band 5–Near Infrared (NIR) | 0.85–0.88 | ||
Band 6–Thermal Infrared | 10.40–12.50 | 60 | Band 6–Short-wave Infrared (SWIR) 1 | 1.57–1.65 | 30 |
Band 7–Short-wave Infrared | 2.09–2.35 | 30 | Band 7–Short-wave Infrared (SWIR) 2 | 2.11–2.29 | |
Band 8–Panchromatic | 0.52–0.90 | 15 | Band 8–Panchromatic | 0.50–0.68 | 15 |
Band 9–Cirrus | 1.36–1.38 | 30 | |||
Band 10–TIRS 1 | 10.60–11.19 | 100 | |||
Band 11–TIRS 2 | 11.50–12.51 |
Class | Description |
---|---|
Vegetation | Area predominantly covered with natural or man-made vegetation. |
Built-up | Area developed with building materials |
Barren | Area predominantly with bare soil around the year. |
Roads | Area developed with an impervious surface such as asphalt for transportation purposes. |
Water | Area covered by water year around. |
Validation Data | Producer’s Accuracy | User’s Accuracy | |||||||
---|---|---|---|---|---|---|---|---|---|
Vegetation | Built-Up | Barren | Roads | Water | Total | ||||
Classified Data | Vegetation | 48 | 0 | 1 | 0 | 1 | 50 | 96.00% | 96.00% |
Built-up | 0 | 48 | 2 | 2 | 0 | 52 | 96.00% | 92.31% | |
Barren | 1 | 1 | 45 | 2 | 0 | 49 | 90.00% | 91.84% | |
Roads | 0 | 1 | 1 | 46 | 0 | 48 | 92.00% | 95.83% | |
Water | 1 | 0 | 1 | 0 | 49 | 51 | 98.00% | 96.08% | |
Total | 50 | 50 | 50 | 50 | 50 | 250 |
Validation Data | Producer’s Accuracy | User’s Accuracy | |||||||
---|---|---|---|---|---|---|---|---|---|
Vegetation | Built-Up | Barren | Roads | Water | Total | ||||
Classified Data | Vegetation | 45 | 0 | 0 | 0 | 1 | 46 | 90.00% | 97.83% |
Built-up | 0 | 45 | 1 | 1 | 0 | 47 | 90.00% | 95.74% | |
Barren | 1 | 2 | 49 | 2 | 0 | 54 | 98.00% | 90.74% | |
Roads | 0 | 1 | 1 | 41 | 0 | 43 | 82.00% | 95.35% | |
Water | 1 | 0 | 0 | 0 | 49 | 50 | 98.00% | 98.00% | |
Total | 47 | 48 | 51 | 44 | 50 | 240 |
LULC 2000 | LULC 2020 | Total | ||||
---|---|---|---|---|---|---|
Reclaimed Area 1 | Vegetation | Built-Up | Barren | Roads | Water | |
Vegetation | 1.4 | 6.3 | 3.6 | 0.7 | 0.0 | 12.1 |
Built-up | 0.6 | 64.1 | 64.4 | 12.5 | 1.2 | 142.8 |
Barren | 0.8 | 52.8 | 44.0 | 12.0 | 0.1 | 109.7 |
Roads | 0.1 | 9.5 | 5.1 | 2.7 | 0.3 | 17.7 |
Water | 0.7 | 57.0 | 56.5 | 9.3 | 0.2 | 123.7 |
Total | 3.7 | 189.7 | 173.7 | 37.2 | 1.7 | 406.0 |
Reclaimed Area 2 | ||||||
Vegetation | 3.8 | 2.2 | 0.1 | 0.3 | 0.0 | 6.3 |
Built-up | 0.3 | 3.6 | 1.4 | 1.1 | 0.0 | 6.3 |
Barren | 0.1 | 4.5 | 2.4 | 1.0 | 0.0 | 8.0 |
Roads | 0.1 | 5.2 | 2.3 | 2.8 | 0.0 | 10.4 |
Water | 0.0 | 5.6 | 25.6 | 0.5 | 0.0 | 31.7 |
Total | 4.2 | 21.1 | 31.8 | 5.7 | 0.0 | 62.7 |
Reclaimed Area 3 | ||||||
Vegetation | 3.8 | 5.0 | 4.9 | 0.8 | 0.0 | 14.5 |
Built-up | 0.5 | 32.5 | 17.3 | 10.4 | 0.0 | 60.6 |
Barren | 0.5 | 28.2 | 11.6 | 8.5 | 0.0 | 48.7 |
Roads | 0.2 | 7.0 | 1.7 | 4.8 | 0.0 | 13.7 |
Water | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Total | 4.9 | 72.7 | 35.5 | 24.4 | 0.0 | 137.4 |
Reclaimed Area 4 | ||||||
Vegetation | 0.0 | 7.5 | 31.3 | 0.0 | 0.0 | 38.8 |
Built-up | 0.0 | 11.2 | 89.3 | 2.9 | 0.0 | 103.3 |
Barren | 0.0 | 1.7 | 1.8 | 0.5 | 0.0 | 4.1 |
Roads | 0.0 | 7.7 | 22.9 | 1.4 | 0.0 | 32.0 |
Water | 0.0 | 58.2 | 1339.7 | 16.7 | 0.3 | 1415.0 |
Total | 0.0 | 86.3 | 1485.0 | 21.5 | 0.3 | 1593.1 |
Reclaimed Area 5 | ||||||
Vegetation | 0.0 | 1.5 | 1.4 | 0.0 | 0.4 | 3.2 |
Built-up | 0.0 | 5.6 | 3.4 | 0.1 | 5.0 | 14.1 |
Barren | 0.0 | 15.4 | 6.8 | 1.1 | 0.3 | 23.6 |
Roads | 0.0 | 5.9 | 2.1 | 0.0 | 0.3 | 8.2 |
Water | 0.4 | 63.5 | 135.8 | 17.9 | 150.7 | 368.3 |
Total | 0.4 | 91.9 | 149.5 | 19.1 | 156.6 | 417.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlQahtany, A.M.; Dano, U.L.; Elhadi Abdalla, E.M.; Mohammed, W.E.M.; Abubakar, I.R.; Al-Gehlani, W.A.G.; Akbar, N.; Alshammari, M.S. Land Reclamation in a Coastal Metropolis of Saudi Arabia: Environmental Sustainability Implications. Water 2022, 14, 2546. https://doi.org/10.3390/w14162546
AlQahtany AM, Dano UL, Elhadi Abdalla EM, Mohammed WEM, Abubakar IR, Al-Gehlani WAG, Akbar N, Alshammari MS. Land Reclamation in a Coastal Metropolis of Saudi Arabia: Environmental Sustainability Implications. Water. 2022; 14(16):2546. https://doi.org/10.3390/w14162546
Chicago/Turabian StyleAlQahtany, Ali M., Umar Lawal Dano, Eltahir Mohamed Elhadi Abdalla, Wisam E. M. Mohammed, Ismaila Rimi Abubakar, Wadee Ahmed Ghanem Al-Gehlani, Naji Akbar, and Maher S. Alshammari. 2022. "Land Reclamation in a Coastal Metropolis of Saudi Arabia: Environmental Sustainability Implications" Water 14, no. 16: 2546. https://doi.org/10.3390/w14162546
APA StyleAlQahtany, A. M., Dano, U. L., Elhadi Abdalla, E. M., Mohammed, W. E. M., Abubakar, I. R., Al-Gehlani, W. A. G., Akbar, N., & Alshammari, M. S. (2022). Land Reclamation in a Coastal Metropolis of Saudi Arabia: Environmental Sustainability Implications. Water, 14(16), 2546. https://doi.org/10.3390/w14162546