Preparation of MnOx-Modified Biochar and Its Removal Mechanism for Cr(VI) in Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. The Modification of BC
2.3. Physicochemical Characterization
2.4. Sorption Experiments
2.5. Data Analysis
3. Results and Discussion
3.1. The Physiochemical Properties of BC and MnOBCs
3.1.1. Specific Surface Area and Pore Structure
3.1.2. Surface Morphology Characteristics
3.1.3. Analysis of Functional Groups and Mineralogical Characterization
3.2. Cr(VI) Sorption Performance of BC and MnOBCs
3.2.1. Effect of Initial pH on Cr(VI) Sorption
3.2.2. Effect of Ion Strength on Cr(VI) Sorption
3.2.3. Sorption Kinetics
3.2.4. Sorption Isotherms
3.3. Formation and Distribution of Cr in BC and MnOBCs
3.3.1. XPS Spectra Analysis
3.3.2. TEM-EDS Analysis
3.4. Cr(VI) Immobilization Mechanisms on BC and MnOBCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, X.; Hou, X.; Song, F.; Zhao, J.; Zhang, L. Facet-Dependent Cr(VI) Adsorption of Hematite Nanocrystals. Environ. Sci. Technol. 2016, 50, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.; Wang, G.; Yang, Z.; Xian, J.; Yang, Y.; Li, T.; Pu, Y.; Jia, Y.; Li, Y.; et al. Adsorption and Reduction of Cr(VI) by a Novel Nanoscale FeS/Chitosan/Biochar Composite from Aqueous Solution. J. Environ. Chem. Eng. 2021, 9, 105407. [Google Scholar] [CrossRef]
- Lewicki, S.; Zdanowski, R.; Krzyżowska, M.; Lewicka, A.; Dębski, B.; Niemcewicz, M.; Goniewicz, M. The Role of Chromium III in the Organism and Its Possible Use in Diabetes and Obesity Treatment. Ann. Agric. Environ. Med. 2014, 21, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Bai, Y.-N.; Lu, Y.-Z.; Shen, N.; Lau, T.-C.; Zeng, R.J. Investigation of Cr(VI) Reduction Potential and Mechanism by Caldicellulosiruptor saccharolyticus under Glucose Fermentation Condition. J. Hazard. Mater. 2018, 344, 585–592. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Zhang, G.; Meng, F.; Li, L.; Wu, S. Removal of Hexavalent Chromium from Aqueous Solution by Different Surface-Modified Biochars: Acid Washing, Nanoscale Zero-Valent Iron and Ferric Iron Loading. Bioresour. Technol. 2018, 261, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.; Liu, Y.; Tan, X.; Wang, S.; Zeng, G.; Zheng, B.; Li, T.; Jiang, Z.; Liu, W. Effect of Porous Zinc–Biochar Nanocomposites on Cr(VI) Adsorption from Aqueous Solution. RSC Adv. 2015, 5, 35107–35115. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, Z.; Si, M.; Zhu, F.; Yang, W.; Zhao, F.; Shi, Y. Application of Biochars in the Remediation of Chromium Contamination: Fabrication, Mechanisms, and Interfering Species. J. Hazard. Mater. 2021, 407, 124376. [Google Scholar] [CrossRef]
- Wang, F.; Liu, L.-Y.; Liu, F.; Wang, L.-G.; Ouyang, T.; Chang, C.-T. Facile One-Step Synthesis of Magnetically Modified Biochar with Enhanced Removal Capacity for Hexavalent Chromium from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2017, 81, 414–418. [Google Scholar] [CrossRef]
- Chen, G.; Feng, J.; Wang, W.; Yin, Y.; Liu, H. Photocatalytic Removal of Hexavalent Chromium by Newly Designed and Highly Reductive TiO2 Nanocrystals. Water Res. 2017, 108, 383–390. [Google Scholar] [CrossRef]
- GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; SundarRajan, P. A Review on Cleaner Strategies for Chromium Industrial Wastewater: Present Research and Future Perspective. J. Clean. Prod. 2019, 228, 580–593. [Google Scholar] [CrossRef]
- Chen, Y.; Qian, Y.; Ma, J.; Mao, M.; Qian, L.; An, D. New Insights into the Cooperative Adsorption Behavior of Cr(VI) and Humic Acid in Water by Powdered Activated Carbon. Sci. Total Environ. 2022, 817, 153081. [Google Scholar] [CrossRef] [PubMed]
- Ihsanullah; Al-Khaldi, F.A.; Abu-Sharkh, B.; Abulkibash, A.M.; Qureshi, M.I.; Laoui, T.; Atieh, M.A. Effect of Acid Modification on Adsorption of Hexavalent Chromium (Cr(VI)) from Aqueous Solution by Activated Carbon and Carbon Nanotubes. Desalin. Water Treat. 2016, 57, 7232–7244. [Google Scholar] [CrossRef]
- Dubey, R.; Bajpai, J.; Bajpai, A.K. Green Synthesis of Graphene Sand Composite (GSC) as Novel Adsorbent for Efficient Removal of Cr (VI) Ions from Aqueous Solution. J. Water Process Eng. 2015, 5, 83–94. [Google Scholar] [CrossRef]
- Zhong, M.; Li, M.; Tan, B.; Gao, B.; Qiu, Y.; Wei, X.; Hao, H.; Xia, Z.; Zhang, Q. Investigations of Cr(VI) Removal by Millet Bran Biochar Modified with Inorganic Compounds: Momentous Role of Additional Lactate. Sci. Total Environ. 2021, 793, 148098. [Google Scholar] [CrossRef]
- Qu, J.; Wang, Y.; Tian, X.; Jiang, Z.; Deng, F.; Tao, Y.; Jiang, Q.; Wang, L.; Zhang, Y. KOH-Activated Porous Biochar with High Specific Surface Area for Adsorptive Removal of Chromium (VI) and Naphthalene from Water: Affecting Factors, Mechanisms and Reusability Exploration. J. Hazard. Mater. 2021, 401, 123292. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic Sorption on Zero-Valent Iron-Biochar Complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Naeth, M.A.; Chang, S.X. Lead(II) Adsorption on Microwave-Pyrolyzed Biochars and Hydrochars Depends on Feedstock Type and Production Temperature. J. Hazard. Mater. 2021, 412, 125255. [Google Scholar] [CrossRef]
- Xiao, Y.; Xue, Y.; Gao, F.; Mosa, A. Sorption of Heavy Metal Ions onto Crayfish Shell Biochar: Effect of Pyrolysis Temperature, PH and Ionic Strength. J. Taiwan Inst. Chem. Eng. 2017, 80, 114–121. [Google Scholar] [CrossRef]
- Yang, Q.; Mašek, O.; Zhao, L.; Nan, H.; Yu, S.; Yin, J.; Li, Z.; Cao, X. Country-Level Potential of Carbon Sequestration and Environmental Benefits by Utilizing Crop Residues for Biochar Implementation. Appl. Energy 2021, 282, 116275. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Tang, J.; Wang, Y.; Li, H.; Zhang, H.; Tang, J.; Wang, Z.; Li, X. Biochar Prepared from Co-Pyrolysis of Municipal Sewage Sludge and Tea Waste for the Adsorption of Methylene Blue from Aqueous Solutions: Kinetics, Isotherm, Thermodynamic and Mechanism. J. Mol. Liq. 2016, 220, 432–441. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, J.; Hou, D.; Tsang, D.C.W.; Ok, Y.S.; Alessi, D.S. Synthesis of MgO-Coated Corncob Biochar and Its Application in Lead Stabilization in a Soil Washing Residue. Environ. Int. 2019, 122, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Chen, H.; Xi, J.; Yao, D.; Zhou, Z.; Tian, Y.; Lu, X. Biochars with Excellent Pb(II) Adsorption Property Produced from Fresh and Dehydrated Banana Peels via Hydrothermal Carbonization. Bioresour. Technol. 2017, 232, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Rao, D.; Zou, L.; Teng, Y.; Yu, H. Capacity and Potential Mechanisms of Cd(II) Adsorption from Aqueous Solution by Blue Algae-Derived Biochars. Sci. Total Environ. 2021, 767, 145447. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Michalak, I.; Rutkowski, P. Biochars Obtained from Freshwater Biomass—Green Macroalga and Hornwort as Cr(III) Ions Sorbents. Biomass Convers. Bioref. 2021, 11, 301–313. [Google Scholar] [CrossRef]
- Michalak, I.; Baśladyńska, S.; Mokrzycki, J.; Rutkowski, P. Biochar from A Freshwater Macroalga as A Potential Biosorbent for Wastewater Treatment. Water 2019, 11, 1390. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Michalak, I.; Rutkowski, P. Tomato Green Waste Biochars as Sustainable Trivalent Chromium Sorbents. Environ. Sci. Pollut. Res. 2021, 28, 24245–24255. [Google Scholar] [CrossRef]
- Rajapaksha, A.U.; Alam, M.S.; Chen, N.; Alessi, D.S.; Igalavithana, A.D.; Tsang, D.C.W.; Ok, Y.S. Removal of Hexavalent Chromium in Aqueous Solutions Using Biochar: Chemical and Spectroscopic Investigations. Sci. Total Environ. 2018, 625, 1567–1573. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Removal of Arsenic by Magnetic Biochar Prepared from Pinewood and Natural Hematite. Bioresour. Technol. 2015, 175, 391–395. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, C.; Yuan, Y.; Mao, X.; Li, Y.; Wang, N.; Wang, S.; Wang, X. Pinewood Outperformed Bamboo as Feedstock to Prepare Biochar-Supported Zero-Valent Iron for Cr6+ Reduction. Environ. Res. 2020, 187, 109695. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Huang, D.; Wan, J.; Xue, W.; Wen, X.; Liu, X.; Chen, S.; Lei, L.; Zhang, Q. Recent Advances of Biochar Materials for Typical Potentially Toxic Elements Management in Aquatic Environments: A Review. J. Clean. Prod. 2020, 255, 119523. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Wu, M.; Pang, Y.; Hao, Z.; Hu, M.; Qiu, R.; Chen, Z. Enhanced Adsorption of Tetracycline by an Iron and Manganese Oxides Loaded Biochar: Kinetics, Mechanism and Column Adsorption. Bioresour. Technol. 2021, 320, 124264. [Google Scholar] [CrossRef]
- Li, L.; Cao, G.; Zhu, R. Adsorption of Cr(VI) from Aqueous Solution by a Litchi Shell-Based Adsorbent. Environ. Res. 2021, 196, 110356. [Google Scholar] [CrossRef]
- Liu, X.; Gao, M.; Qiu, W.; Khan, Z.H.; Liu, N.; Lin, L.; Song, Z. Fe-Mn-Ce Oxide-Modified Biochar Composites as Efficient Adsorbents for Removing As(III) from Water: Adsorption Performance and Mechanisms. Environ. Sci. Pollut. Res. 2019, 26, 17373–17382. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Dai, W.; Deng, K.; Pan, T.; Guan, Z. Efficient Removal of Cr(VI) from Aqueous Solution by Fe-Mn Oxide-Modified Biochar. Water Air Soil Pollut. 2020, 231, 61. [Google Scholar] [CrossRef]
- Thotagamuge, R.; Kooh, M.R.R.; Mahadi, A.H.; Lim, C.M.; Abu, M.; Jan, A.; Hanipah, A.H.A.; Khiong, Y.Y.; Shofry, A. Copper Modified Activated Bamboo Charcoal to Enhance Adsorption of Heavy Metals from Industrial Wastewater. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100562. [Google Scholar] [CrossRef]
- Masanizan, A.; Lim, C.M.; Kooh, M.R.R.; Mahadi, A.H.; Thotagamuge, R. The Removal of Ruthenium-Based Complexes N3 Dye from DSSC Wastewater Using Copper Impregnated KOH-Activated Bamboo Charcoal. Water Air Soil Pollut. 2021, 232, 388. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Gu, Y.; Xu, Y.; Zeng, G.; Hu, X.; Liu, S.; Wang, X.; Liu, S.; Li, J. Biochar-Based Nano-Composites for the Decontamination of Wastewater: A Review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef]
- Younis, S.A.; Kim, K.-H.; Shaheen, S.M.; Antoniadis, V.; Tsang, Y.F.; Rinklebe, J.; Deep, A.; Brown, R.J.C. Advancements of Nanotechnologies in Crop Promotion and Soil Fertility: Benefits, Life Cycle Assessment, and Legislation Policies. Renew. Sustain. Energy Rev. 2021, 152, 111686. [Google Scholar] [CrossRef]
- Wang, H.; Gao, B.; Wang, S.; Fang, J.; Xue, Y.; Yang, K. Removal of Pb(II), Cu(II), and Cd(II) from Aqueous Solutions by Biochar Derived from KMnO4 Treated Hickory Wood. Bioresour. Technol. 2015, 197, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Fan, W.; Zhang, K.; Xiang, H.; Wang, X. Nano-Manganese Oxides-Modified Biochar for Efficient Chelated Copper Citrate Removal from Water by Oxidation-Assisted Adsorption Process. Sci. Total Environ. 2020, 709, 136154. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Qiu, L.; Tang, G.; Chen, W.; Li, Y.; Gao, B.; He, F. Ultrafast Sequestration of Cadmium and Lead from Water by Manganese Oxide Supported on a Macro-Mesoporous Biochar. Chem. Eng. J. 2020, 387, 124095. [Google Scholar] [CrossRef]
- Shi, S.; Yang, J.; Liang, S.; Li, M.; Gan, Q.; Xiao, K.; Hu, J. Enhanced Cr(VI) Removal from Acidic Solutions Using Biochar Modified by Fe3O4@SiO2-NH2 Particles. Sci. Total Environ. 2018, 628–629, 499–508. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, Q.; Gao, B.; Li, M.; Liu, C.; Qiu, Y. Removal of Hexavalent Chromium by Biochar Supported nZVI Composite: Batch and Fixed-Bed Column Evaluations, Mechanisms, and Secondary Contamination Prevention. Chemosphere 2019, 217, 85–94. [Google Scholar] [CrossRef]
- Sinha, R.; Kumar, R.; Abhishek, K.; Shang, J.; Bhattacharya, S.; Sengupta, S.; Kumar, N.; Singh, R.K.; Mallick, J.; Kar, M.; et al. Single-Step Synthesis of Activated Magnetic Biochar Derived from Rice Husk for Hexavalent Chromium Adsorption: Equilibrium Mechanism, Kinetics, and Thermodynamics Analysis. Groundw. Sustain. Dev. 2022, 18, 100796. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.; Gao, Y.; Li, A. Facile Synthesis of Nano ZnO/ZnS Modified Biochar by Directly Pyrolyzing of Zinc Contaminated Corn Stover for Pb(II), Cu(II) and Cr(VI) Removals. Waste Manag. 2018, 79, 625–637. [Google Scholar] [CrossRef]
- Zhu, N.; Yan, T.; Qiao, J.; Cao, H. Adsorption of Arsenic, Phosphorus and Chromium by Bismuth Impregnated Biochar: Adsorption Mechanism and Depleted Adsorbent Utilization. Chemosphere 2016, 164, 32–40. [Google Scholar] [CrossRef]
- Guo, N.; Lv, X.; Yang, Q.; Xu, X.; Song, H. Effective Removal of Hexavalent Chromium from Aqueous Solution by ZnCl2 Modified Biochar: Effects and Response Sequence of the Functional Groups. J. Mol. Liq. 2021, 334, 116149. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Liu, J.; Liu, J.; Xia, F.; Wang, C.; Dahlgren, R.A.; Liu, W. Mechanism of Cr(VI) Removal by Magnetic Greigite/Biochar Composites. Sci. Total Environ. 2020, 700, 134414. [Google Scholar] [CrossRef]
- Hoang, L.P.; Van, H.T.; Nguyen, L.H.; Mac, D.-H.; Vu, T.T.; Ha, L.T.; Nguyen, X.C. Removal of Cr(VI) from Aqueous Solution Using Magnetic Modified Biochar Derived from Raw Corncob. New J. Chem. 2019, 43, 18663–18672. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, L.; Qin, Y.; Xu, M.; Jia, X.; Chen, Z. Removal of Aqueous Cr(VI) by a Magnetic Biochar Derived from Melia Azedarach Wood. Bioresour. Technol. 2018, 256, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, N.; Feng, C.; Li, M.; Gao, Y. Chromium Removal Using a Magnetic Corncob Biochar/Polypyrrole Composite by Adsorption Combined with Reduction: Reaction Pathway and Contribution Degree. Colloids Surf. A Physicochem. Eng. Asp. 2018, 556, 201–209. [Google Scholar] [CrossRef]
- Dong, F.-X.; Yan, L.; Zhou, X.-H.; Huang, S.-T.; Liang, J.-Y.; Zhang, W.-X.; Guo, Z.-W.; Guo, P.-R.; Qian, W.; Kong, L.-J.; et al. Simultaneous Adsorption of Cr(VI) and Phenol by Biochar-Based Iron Oxide Composites in Water: Performance, Kinetics and Mechanism. J. Hazard. Mater. 2021, 416, 125930. [Google Scholar] [CrossRef] [PubMed]
- Cuong, D.V.; Wu, P.-C.; Chen, L.-I.; Hou, C.-H. Active MnO2/Biochar Composite for Efficient As(III) Removal: Insight into the Mechanisms of Redox Transformation and Adsorption. Water Res. 2021, 188, 116495. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.; Zhao, D. Mesoporous Materials for Energy Conversion and Storage Devices. Nat. Rev. Mater. 2016, 1, 16023. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Jensen, P.A.; Jensen, A.D.; Glarborg, P.; Larsen, F.H.; Andersen, M.L. Characterization of Free Radicals by Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures. Biomass Bioenergy 2016, 94, 117–129. [Google Scholar] [CrossRef]
- Klüpfel, L.; Keiluweit, M.; Kleber, M.; Sander, M. Redox Properties of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2014, 48, 5601–5611. [Google Scholar] [CrossRef] [PubMed]
- Kamran, U.; Park, S.-J. MnO2-Decorated Biochar Composites of Coconut Shell and Rice Husk: An Efficient Lithium Ions Adsorption-Desorption Performance in Aqueous Media. Chemosphere 2020, 260, 127500. [Google Scholar] [CrossRef]
- Mohan, D.; Abhishek, K.; Sarswat, A.; Patel, M.; Singh, P.; Pittman, C.U. Biochar Production and Applications in Soil Fertility and Carbon Sequestration-a Sustainable Solution to Crop-Residue Burning in India. RSC Adv. 2018, 8, 508–520. [Google Scholar] [CrossRef]
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Shaheen, S.M.; Rinklebe, J.; Wang, H.; Murtaza, B.; Islam, E.; Farrakh Nawaz, M.; et al. Arsenic Removal by Japanese Oak Wood Biochar in Aqueous Solutions and Well Water: Investigating Arsenic Fate Using Integrated Spectroscopic and Microscopic Techniques. Sci. Total Environ. 2018, 621, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Jiang, Y.; Zhao, Z.; Wang, L.; Chen, J.; Ren, S.; Liu, Z.; Zhang, Y.; Tsang, D.C.W.; Crittenden, J.C. PH Dependence of Arsenic Oxidation by Rice-Husk-Derived Biochar: Roles of Redox-Active Moieties. Environ. Sci. Technol. 2019, 53, 9034–9044. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhong, X.; Wang, Y.; Ding, Z.; Wang, C.; Wang, G.; Liao, S. An Efficient Adsorption of Manganese Oxides/Activated Carbon Composite for Lead(II) Ions from Aqueous Solution. Arab. J. Sci. Eng. 2018, 43, 2155–2165. [Google Scholar] [CrossRef]
- Duan, S.; Ma, W.; Pan, Y.; Meng, F.; Yu, S.; Wu, L. Synthesis of Magnetic Biochar from Iron Sludge for the Enhancement of Cr (VI) Removal from Solution. J. Taiwan Inst. Chem. Eng. 2017, 80, 835–841. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Natasha; Mosa, A.; El-Naggar, A.; Faysal Hossain, M.; Abdelrahman, H.; Khan Niazi, N.; Shahid, M.; Zhang, T.; Fai Tsang, Y.; et al. Manganese Oxide-Modified Biochar: Production, Characterization and Applications for the Removal of Pollutants from Aqueous Environments—A Review. Bioresour. Technol. 2022, 346, 126581. [Google Scholar] [CrossRef]
- Miretzky, P.; Cirelli, A.F. Cr(VI) and Cr(III) Removal from Aqueous Solution by Raw and Modified Lignocellulosic Materials: A Review. J. Hazard. Mater. 2010, 180, 1–19. [Google Scholar] [CrossRef]
- Wang, X.S.; Chen, L.F.; Li, F.Y.; Chen, K.L.; Wan, W.Y.; Tang, Y.J. Removal of Cr (VI) with Wheat-Residue Derived Black Carbon: Reaction Mechanism and Adsorption Performance. J. Hazard. Mater. 2010, 175, 816–822. [Google Scholar] [CrossRef]
- Pehlivan, E.; Kahraman, H.; Pehlivan, E. Sorption Equilibrium of Cr(VI) Ions on Oak Wood Charcoal (Carbo ligni) and Charcoal Ash as Low-Cost Adsorbents. Fuel Process. Technol. 2011, 92, 65–70. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, R.; Chen, G.; Xing, B. Facile Synthesis of Multifunctional Bone Biochar Composites Decorated with Fe/Mn Oxide Micro-Nanoparticles: Physicochemical Properties, Heavy Metals Sorption Behavior and Mechanism. J. Hazard. Mater. 2020, 399, 123067. [Google Scholar] [CrossRef]
- Xu, R.; Xiao, S.; Yuan, J.; Zhao, A. Adsorption of Methyl Violet from Aqueous Solutions by the Biochars Derived from Crop Residues. Bioresour. Technol. 2011, 102, 10293–10298. [Google Scholar] [CrossRef]
- Park, C.M.; Han, J.; Chu, K.H.; Al-Hamadani, Y.A.J.; Her, N.; Heo, J.; Yoon, Y. Influence of Solution PH, Ionic Strength, and Humic Acid on Cadmium Adsorption onto Activated Biochar: Experiment and Modeling. J. Ind. Eng. Chem. 2017, 48, 186–193. [Google Scholar] [CrossRef]
- Gheju, M.; Balcu, I.; Mosoarca, G. Removal of Cr(VI) from Aqueous Solutions by Adsorption on MnO2. J. Hazard. Mater. 2016, 310, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Boada, R.; Cibin, G.; Palet, C. Enhancement of Selective Adsorption of Cr Species via Modification of Pine Biomass. Sci. Total Environ. 2021, 756, 143816. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Varjani, S.; Liu, Y. Feasibility Study on a New Pomelo Peel Derived Biochar for Tetracycline Antibiotics Removal in Swine Wastewater. Sci. Total Environ. 2020, 720, 137662. [Google Scholar] [CrossRef]
- Jin, H.; Capareda, S.; Chang, Z.; Gao, J.; Xu, Y.; Zhang, J. Biochar Pyrolytically Produced from Municipal Solid Wastes for Aqueous As(V) Removal: Adsorption Property and Its Improvement with KOH Activation. Bioresour. Technol. 2014, 169, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; He, M.; Lin, C. Adsorption of Antimony(III) and Antimony(V) on Bentonite: Kinetics, Thermodynamics and Anion Competition. Microchem. J. 2011, 97, 85–91. [Google Scholar] [CrossRef]
- Yoon, K.; Cho, D.-W.; Tsang, D.C.W.; Bolan, N.; Rinklebe, J.; Song, H. Fabrication of Engineered Biochar from Paper Mill Sludge and Its Application into Removal of Arsenic and Cadmium in Acidic Water. Bioresour. Technol. 2017, 246, 69–75. [Google Scholar] [CrossRef]
- Shen, C.; Chen, H.; Wu, S.; Wen, Y.; Li, L.; Jiang, Z.; Li, M.; Liu, W. Highly Efficient Detoxification of Cr(VI) by Chitosan–Fe(III) Complex: Process and Mechanism Studies. J. Hazard. Mater. 2013, 244–245, 689–697. [Google Scholar] [CrossRef]
- Chen, N.; Cao, S.; Zhang, L.; Peng, X.; Wang, X.; Ai, Z.; Zhang, L. Structural Dependent Cr(VI) Adsorption and Reduction of Biochar: Hydrochar versus Pyrochar. Sci. Total Environ. 2021, 783, 147084. [Google Scholar] [CrossRef]
- Jia, X.; Zhou, J.; Liu, J.; Liu, P.; Yu, L.; Wen, B.; Feng, Y. The Antimony Sorption and Transport Mechanisms in Removal Experiment by Mn-Coated Biochar. Sci. Total Environ. 2020, 724, 138158. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Zhang, B.; Zong, W.; Xu, S.; Liu, Y.; Cao, S. Enhanced Electroluminescent Performance by Doping Organic Conjugated Ionic Compound into Graphene Oxide Hole-Injecting Layer. J. Mater. Sci. 2019, 54, 12688–12697. [Google Scholar] [CrossRef]
- Song, Z.; Lian, F.; Yu, Z.; Zhu, L.; Xing, B.; Qiu, W. Synthesis and Characterization of a Novel MnOx-Loaded Biochar and Its Adsorption Properties for Cu2+ in Aqueous Solution. Chem. Eng. J. 2014, 242, 36–42. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Chen, J.P. An XPS Study for Mechanisms of Arsenate Adsorption onto a Magnetite-Doped Activated Carbon Fiber. J. Colloid Interface Sci. 2010, 343, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Shin, H.-S. Competitive Adsorption of Heavy Metals onto Modified Biochars: Comparison of Biochar Properties and Modification Methods. J. Environ. Manag. 2021, 299, 113651. [Google Scholar] [CrossRef]
- Choi, K.; Yong Lee, S.; Kim, H.; Bong Lee, K.; Choi, J.-W.; Jung, K.-W. Mechanistic Insights into the Simultaneous Removal of As(V) and Cr(VI) Oxyanions by a Novel Hierarchical Corolla-like MnO2-Decorated Porous Magnetic Biochar Composite: A Combined Experimental and Density Functional Theory Study. Appl. Surf. Sci. 2022, 578, 151991. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Liu, S.; Yin, Y.; Zeng, G.; Tan, X.; Hu, X.; Hu, X.; Jiang, L.; Ding, Y.; et al. Investigation of the Adsorption-Reduction Mechanisms of Hexavalent Chromium by Ramie Biochars of Different Pyrolytic Temperatures. Bioresour. Technol. 2016, 218, 351–359. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, L.; Huang, Y.; Song, Z.; Qiu, W. Effects of a Manganese Oxide-Modified Biochar Composite on Adsorption of Arsenic in Red Soil. J. Environ. Manag. 2015, 163, 155–162. [Google Scholar] [CrossRef]
- Ding, Z.; Sun, G.; Fu, F.; Ye, C. Phase Transformation of Cr(VI)-Adsorbed Ferr Ihydr Ite in the Presence of Mn(II): Fate of Mn(II) and Cr(VI). J. Environ. Sci. 2022, 113, 251–259. [Google Scholar] [CrossRef]
Biochar Feedstock | Main Chemicals Used | Reported Mechanisms | qmax (mg g−1) | Reference |
---|---|---|---|---|
Phoenix tree leaves | FeCl3·6H2O | electrostatic attraction, reduction, and chelation | 27.2 | [44] |
Sewage sludge | FeCl3·6H2O | electrostatic attraction, complexation, and reduction reaction | 31.53 | [45] |
Rice husk | FeCl3·6H2O ZnCl2 | electrostatic attraction and ion exchange | 9.97 | [46] |
Corn stover | ZnSO4 | electrostatic attraction and complexation | 24.5 | [47] |
Wheat straw | Bi2O3 | electrostatic attraction and reduction reaction | 12.23 | [48] |
Sea buckthorn stones | ZnCl2 | electrostatic attraction, complexation, and reduction reaction | 19.3 | [49] |
Rice husk | FeSO4·7H2O | electrostatic attraction and reduction reaction | 23.25 | [50] |
Corncob | FeCl3·6H2O | electrostatic attraction, ion exchange and adsorption coupled-reduction | 25.94 | [51] |
Melia azedarach wood | Fe(NO3)3·9H2O | reduction reaction | 25.27 | [52] |
Corncobs | Fe(NO3)3, FeCl3·6H2O and pyrrole | ion exchange, chelation, complexation, and reduction reaction | 19.23 | [53] |
Rice husk | Mn(NO3)2 | electrostatic attraction, complexation, and reduction reaction | 28.58 | This study |
BC | MnOBC-1 | MnOBC-2 | |
---|---|---|---|
BET specific area (m2 g−1) | 33.67 | 302.02 | 299.56 |
Total pore volume (cm3 g−1) | 0.025 | 0.130 | 0.134 |
Average pore diameter (nm) | 3.02 | 1.72 | 1.79 |
The Pseudo-First-Order Model | The Pseudo-Second-Order Model | Elovich Model | |||||||
---|---|---|---|---|---|---|---|---|---|
qe (mg g−1) | k1 | R2 | qe (mg g−1) | k2 | R2 | α | β | R2 | |
BC | 5.12 | 0.14 | 0.8570 | 5.37 | 0.037 | 0.9334 | 182.83 | 2.30 | 0.9799 |
MnOBC-1 | 13.84 | 0.018 | 0.7503 | 15.20 | 0.0016 | 0.8594 | 2.14 | 0.47 | 0.9802 |
MnOBC-2 | 22.04 | 0.020 | 0.7281 | 23.76 | 0.0013 | 0.8429 | 5.02 | 0.31 | 0.9821 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qmax (mg g−1) | KL | R2 | KF | 1/n | R2 | |
BC | 10.10 | 0.082 | 0.8582 | 2.71 | 0.23 | 0.9821 |
MnOBC-1 | 20.69 | 0.57 | 0.9079 | 10.25 | 0.17 | 0.9886 |
MnOBC-2 | 28.58 | 0.30 | 0.8863 | 11.54 | 0.21 | 0.9868 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Qin, L.; Duan, T.; Qi, Z.; Zou, L. Preparation of MnOx-Modified Biochar and Its Removal Mechanism for Cr(VI) in Aqueous Solution. Water 2022, 14, 2507. https://doi.org/10.3390/w14162507
Fan J, Qin L, Duan T, Qi Z, Zou L. Preparation of MnOx-Modified Biochar and Its Removal Mechanism for Cr(VI) in Aqueous Solution. Water. 2022; 14(16):2507. https://doi.org/10.3390/w14162507
Chicago/Turabian StyleFan, Jianxin, Liang Qin, Ting Duan, Zenglin Qi, and Lan Zou. 2022. "Preparation of MnOx-Modified Biochar and Its Removal Mechanism for Cr(VI) in Aqueous Solution" Water 14, no. 16: 2507. https://doi.org/10.3390/w14162507