Evolution of Sustainable Water Resource Utilization in Hunan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Water Resources Ecological Footprint Model
2.4. Water Resources Ecological Carrying Capacity Model
2.5. Water Ecological Pressure Index
2.6. The 10,000 CNY GDP Water Ecological Footprint
3. Results
3.1. Water Resource Supply
3.2. Water Resource Demand
3.3. Evolution of the Sustainable Water Resource Utilization
4. Discussion
4.1. The Relationship between Water Resources and Precipitation
4.2. Advantages and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geo. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X. Assessment on carrying capacity of water resources in Yangze River economic zone based on principle component analysis. Bullet. Soil Water Conserv. 2017, 27, 172–178. (In Chinese) [Google Scholar]
- Chapagain, A.K.; Hoekstra, A.Y. Water footprints of nations. In Value of Water Research Report Series No. 16; UNESCO-IHE: Delft, The Netherlands, 2004. [Google Scholar]
- Xu, Z.M.; Cheng, G.D. The predicted demand of water resources in the middle reaches of the Heihe River from 1995 to 2050. J. Glaciolgy Geocryol. 2000, 2, 139–146. (In Chinese) [Google Scholar]
- Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. (In Chinese) [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; In Press. [Google Scholar]
- Nogueira, M. The sensitivity of the atmospheric branch of the global water cycle to temperature fluctuations at synoptic to decadal time-scales in different satellite-and model-based products. Clim. Dynam. 2019, 52, 617–636. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, X.; Singh, V.P.; Xu, C.; Kong, D.; Xiao, M.; Chen, X. Homogenization of precipitation and flow regimes across China: Changing properties, causes and implications. J. Hydrol. 2015, 530, 462–475. [Google Scholar] [CrossRef]
- Yan, D.; Yao, M.; Ludwig, F.; Kabat, P.; Huang, H.Q.; Hutjes, R.W.A.; Werners, S.E. Exploring future water shortage for large river basins under different water allocation strategies. Water Resour. Manag. 2018, 32, 3071–3086. [Google Scholar] [CrossRef]
- Men, B.; Liu, H.; Tian, W.; Wu, Z.; Hui, J. The impact of reservoirs on runoff under climate change: A case of Nierji reservoir in China. Water 2019, 11, 1005. [Google Scholar] [CrossRef]
- Tukimat, N.; Harun, S. Comparative study on the reservoir operation planning with the climate change adaptation. SN Appl. Sci. 2019, 1, 1–11. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; Smith, W.K.; Chang, Q.; Wang, H.; D’Odorico, P. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 2021, 12, 3777. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D. Forests and Water, Background Analytical Study 2 (UN Forum on Forests), April 2018. Available online: https://www.researchgate.net/profile/David-Ellison-5/publication/324685224_From_Myth_to_Concept_and_Beyond_-_The_BioGeoPhysical_Revolution_and_the_Forest-Water_Paradigm/links/5adc6de6a6fdcc29358a3b41/From-Myth-to-Concept-and-Beyond-The-BioGeoPhysical-Revolution-and-the-Forest-Water-Paradigm.pdf (accessed on 10 June 2022).
- Hoek van Dijke, A.J.; Herold, M.; Mallick, K.; Benedict, I.; Machwitz, M.; Schlerf, M.; Pranindita, A.; Theeuwen, J.J.E.; Bastin, J.; Teuling, A.J. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 2022, 15, 363–368. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A.A. review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Feng, Q.; Chen, W.; Li, Z. Effects of forest cover change on catchment evapotranspiration variation in China. Hydrol. Process. 2020, 34, 2219–2228. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Geng, Y. Toward safe treatment of municipal solid wastes in China’s urban areas. Environ. Sci. Technol. 2012, 46, 7067–7068. [Google Scholar] [CrossRef] [PubMed]
- Newman, P. The environmental impact of cities. Environ. Urban. 2016, 18, 275–295. [Google Scholar] [CrossRef]
- Liu, Y.; Song, H.; An, Z.; Sun, C.; Trouet, V.; Cai, Q.; Zeng, X. Recent anthropogenic curtailing of Yellow River runoff and sediment load is unprecedented over the past 500 y. Proc. Natl. Acad. Sci. USA 2020, 117, 18251–18257. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Wang, T.; Yang, D.; Yang, Y. Streamflow decline threatens water security in the upper Yangtze River. J. Hydrol. 2022, 606, 127448. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Yang, W.; Xi, X.; Shi, L.; Dong, W.; Zhang, Q.; Zhou, Y. Shortage of water resources in China and counter measures. Water Pollut. Control 2014, 7, 1–5. (In Chinese) [Google Scholar]
- Su, Y.; Gao, W.; Guan, D.; Su, W. Dynamic assessment and forecast of urban water ecological footprint based on exponential smoothing analysis. J. Clean. Prod. 2018, 195, 354–364. [Google Scholar] [CrossRef]
- Rockström, J.; Lannerstad, M.; Falkenmark, M. Assessing the water challenge of a new green revolution in developing countries. Proc. Natl. Acad. Sci. USA 2007, 104, 6253–6260. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Guan, H.; Zhang, X. Growing season NDVI variation in the Dongting Lake Watershed from 1982 to 2010 and the climatic and anthropogenic influences. Res. Environ. Yangze Basin 2015, 24, 1305–1314. (In Chinese) [Google Scholar]
- Yue, D.; Xu, X.; Hui, C.; Xiong, Y.; Han, X.; Ma, J. Biocapacity supply and demand in Northwestern China: A spatial appraisal of sustainability. Ecol. Econ. 2011, 70, 988–994. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, M.Y.; Cheng, C.T.; Chau, K.W.; Li, G. Multiple criteria data envelopment analysis for full ranking units associated to environment impact assessment. Int. J. Environ. Pollut. 2006, 28, 448–464. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, S. Using Ecological Water Footprint Model to Analyze Sustainable Use of Water Resources in Chongqing. J. Irriga. Drain. 2019, 38, 1672–3317. [Google Scholar]
- Fan, X.Q. Research and Application of Water Resources Ecological Footprint. Ph.D. Thesis, Hohai University, Nanjing, China, 2005. (In Chinese). [Google Scholar]
- Wackenagel, M.; William, E.R. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, BC, Canada, 1996; pp. 3–34. [Google Scholar]
- Wackernagel, M.; Jonathan, L. Measuring Sustainable Development: Ecological Footprints; Centre for Sustainability Studies, Universidad Anahuac de Xalapa: Xalapa-Enríquez, Mexico, 2001. [Google Scholar]
- Zhao, C.; Dong, C.; Wu, L.; Tong, Y. Spatial-temporal pattern of water resources ecological footprint in Zhejiang Province. Bull. Soil Water Conserv. 2016, 36, 242–248. (In Chinese) [Google Scholar]
- Chen, Z.; Chen, X. Temporal and Spatial Distribution and Driving Effects of Water Ecological Footprint in Shandong Province. Yellow River 2020, 42, 76–80. (In Chinese) [Google Scholar]
- Xia, J.; Diao, Y.; She, D.; Li, X.; Zhang, Y.; Ding, W.; Yao, C.; Liu, Z. Analysis on ecological security and ecological carrying capacity of water resources in the Poyang Lake Basin. Water Res. Prot. 2022, 38, 1–24. [Google Scholar]
- Wang, Y.; Cheng, H.; Huang, L. Water resources carrying capacity evaluation of a dense city group: A comprehensive water resources carrying capacity evaluation model of Wuhan urban agglomeration. Urban Water J. 2018, 15, 615–625. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. The world’s water resources. In Proceedings of the International Symposium to Commemorate; The United Nations Educational, Scientific and Cultural Organization: Paris, France, 1998; Volume 25, pp. 93–126. [Google Scholar]
- Liu, N.; Buckley, T.N.; He, X.; Zhang, X.; Zhang, C.; Luo, Z.; Wang, H.; Sterling, N.; Guan, H. Improvement of a simplified process-based model for estimating transpiration under water-limited conditions. Hydrol. Process. 2019, 33, 1670–1685. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Huang, L.N.; Zhang, W.X.; Jiang, C.L.; Fan, X.Q. Ecological footprint method in water resources assessment. Acta Ecol. Sin. 2008, 3, 1279–1286. (In Chinese) [Google Scholar]
- Zhu, J.W.; Chen, Y.Y.; Wang, B.; Zhao, Y.; Wang, J.R.; Zhang, M. Analysis based on water ecological footprint for sustainable utilization of water resources in the Guanzhong plain, China. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012106. [Google Scholar] [CrossRef]
- Zhang, Y. Evaluation of sustainable utilization of water resources in Hechi City based on ecological footprint model. S. N. Water Transf. Water Sci. Technol. 2013, 11, 26–30. (In Chinese) [Google Scholar]
- Deng, C.; Zhu, D.; Nie, X.; Liu, C.; Zhang, G.; Liu, Y.; Li, Z.; Wang, S.; Ma, Y. Precipitation and urban expansion caused jointly the spatiotemporal dislocation between supply and demand of water provision service. J. Environ. Manag. 2021, 299, 113660. [Google Scholar] [CrossRef]
- Pascolini-Campbell, M.; Reager, J.T.; Chandanpurkar, H.A.; Rodell, M. A 10 percent increase in global land evapotranspiration from 2003 to 2019. Nature 2021, 593, 543–547. [Google Scholar] [CrossRef]
- Hu, C.; Fang, C.; Cao, W. Shrinking of Dongting Lake and its weakening connection with the Yangtze River: Analysis of the impact on flooding. Int. J. Sediment Res. 2015, 30, 256–262. [Google Scholar] [CrossRef]
- Budyko, M.I.; Miller, D.H.; Miller, D.H. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Han, J.; Yang, Y.; Roderick, M.L.; Mcvicar, T.R.; Yang, D.; Zhang, S. Assessing the steady-state assumption in water balance calculation across global catchments. Water Resour. Res. 2020, 56, e2020WR027392. [Google Scholar] [CrossRef]
- Yin, D.; Roderick, M.L. Inter-annual variability of the global terrestrial water cycle. Hydrol. Earth Syst. Sci. 2020, 24, 381–396. [Google Scholar] [CrossRef]
- Fu, J.; Kuan, W.; Deng, Y.; Tian, Y.; Zhao, S. Trends of precipitation variations and their spatial paterns in Hunan Province over 56 years (1960–2015). J. Southwest Uni. 2021, 43, 110–119. (In Chinese) [Google Scholar]
- Wang, X.; Xia, W.; Yang, Y.; Yang, Q. Spatio-temporal distribution and its dynamic trend of precipitation in Hunan Province. Hunan Agr. Sci. 2018, 1, 60–63. (In Chinese) [Google Scholar]
- Zhang, M.; Zeng, Y.; Qi, Y. Analyzing spatio-temporal variations of evapotranspiration in Dongting Lake Basin during 2000–2014 based on MOD16. Trans. Chin. Soc. Agric. Eng. 2018, 34, 160–168. (In Chinese) [Google Scholar]
- Li, P.; Sun, M.; Liu, Y.; Ren, P.; Peng, C.; Zhou, X.; Tang, J. Response of Vegetation Photosynthetic Phenology to Urbanization in Dongting Lake Basin, China. Remote Sens. 2021, 13, 3722. [Google Scholar] [CrossRef]
- Hartmann, H.; Snow, J.A.; Su, B.; Jiang, T. Seasonal predictions of precipitation in the Aksu-Tarim River basin for improved water resources management. Global Planet. Chang. 2016, 147, 86–96. [Google Scholar] [CrossRef]
- Ward, E.; Buytaert, W.; Peaver, L.; Wheater, H. Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Adv. Water Resour. 2011, 34, 1222–1231. [Google Scholar] [CrossRef]
- Bao, C.; He, D. The causal relationship between urbanization, economic growth and water use change in provincial China. Sustainability 2015, 7, 16076–16085. [Google Scholar] [CrossRef]
- Bao, C.; Chen, X.J. The driving effects of urbanization on economic growth and water use change in China: A provincial-level analysis in 1997–2011. J. Geogr. Sci. 2015, 5, 530–544. [Google Scholar] [CrossRef]
- Yang, Z.W.; Liu, H.L.; Xu, X.Y.; Yang, T.T. Applying the water footprint and dynamic structural decomposition analysis on the growing water use in China during 1997–2007. Ecol. Indic. 2016, 60, 634–643. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Engel, B. Water environment carrying capacity in Bosten Lake basin. J. Clean. Prod. 2018, 199, 574–583. [Google Scholar] [CrossRef]
- Kisakye, V.; Bruggen, B. Effects of climate change on water savings and water security from rainwater harvesting systems. Resour. Conserv. Recycl. 2018, 138, 49–63. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Su, X.; Qi, L.; Liu, M. Evaluation of the comprehensive carrying capacity of interprovincial water resources in China and the spatial effect. J. Hydrol. 2019, 575, 794–809. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K. Assessment model application of water supply system management in crisis situations. Glob. NEST J. 2014, 16, 893–900. [Google Scholar]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Xing, W.; Feng, X.; Maeyer, P.; Frankl, A. Identifying climate change impacts on water resources in Xinjiang, China. Sci. Total Environ. 2019, 676, 613–626. [Google Scholar] [CrossRef]
- Wang, P.; Wei, Y.; Zhong, F.; Song, X.; Wang, B.; Wang, Q. Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China. Agriculture 2022, 12, 700. [Google Scholar] [CrossRef]
- Li, P.; Qian, H. Water resources research to support a sustainable China. Int. J. Water Resour. D. 2018, 34, 327–336. [Google Scholar] [CrossRef]
- Ober, J.; Karwot, J.; Rusakov, S. Tap water quality and habits of its use: A comparative analysis in poland and ukraine. Energies 2022, 15, 981. [Google Scholar] [CrossRef]
- Chen, B.; Wang, M.; Duan, M.; Ma, X.; Hong, J.; Xie, F.; Zhang, R.; Li, X. In search of key: Protecting human health and the ecosystem from water pollution in China. J. Clean. Prod. 2019, 228, 101–111. [Google Scholar] [CrossRef]
- Chai, L.; Li, H.; Yang, Z.; Min, X.; Liao, Q.; Liu, Y.; Men, S.; Yan, Y.; Xu, J. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: Distribution, contamination, and ecological risk assessment. Environ. Sci. Pollut. R. 2017, 24, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Yuan, Y.; Wang, X.; Li, X. Heavy metal accumulation and its spatial distribution in agricultural soils: Evidence from Hunan province, China. RSC Adv. 2018, 8, 10665–10672. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Jin, X.; Li, B.; Liu, K.; Shi, L. Satellite time series data reveal interannual and seasonal spatiotemporal evapotranspiration patterns in China in response to effect factors. Agric. Water Manag. 2021, 255, 107046. [Google Scholar] [CrossRef]
- Fu, J.; Gong, Y.; Zheng, W.; Zou, J.; Zhang, M.; Zhang, Z.; Qin, J.; Liu, J.; Quan, B. Spatial-temporal variations of terrestrial evapotranspiration across China from 2000 to 2019. Sci. Total Environ. 2022, 825, 153951. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, Y.; Zeng, Z.; Lian, X.; Wang, X.; Du, M.; Jia, G.; Li, Y.; Ma, Y.; Tang, Y.; et al. Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agric. For. Meteorol. 2018, 259, 131–140. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Zhang, X.; Tian, J.; Li, C. Impacts of vegetation changes on global evapotranspiration in the period 2003–2017. Acta Geogr. Sin. 2017, 76, 584–594. [Google Scholar]
- Ma, J.; Chen, Y.; Hao, X.; Li, D. Temporal and spatial changes of surface evapotranspiration and its influencing factors in Henan Province from 2001 to 2019. Res. Soil Water Conserv. 2021, 28, 134–151. (In Chinese) [Google Scholar]
- Wen, Y.; Zhao, J.; Wang, Y.; Wang, Y.; Wang, J. Spatiotemporal variation characteristics of surface evapotranspiration in Shanxi Province based on MOD16. Prog. Geogr. 2020, 39, 255–264. (In Chinese) [Google Scholar] [CrossRef]
- Shao, X.; Zhang, Y.; Liu, C.; Chiew, F.H.; Tian, J.; Ma, N.; Zhang, X. Can indirect evaluation methods and their fusion products reduce uncertainty in actual evapotranspiration estimates? Water Resour. Res. 2022, 58, e2021WR031069. [Google Scholar] [CrossRef]
Years | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Mean | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cities | ||||||||||||
Changsha | 0.138 | 0.111 | 0.098 | 0.089 | 0.081 | 0.073 | 0.065 | 0.059 | 0.064 | 0.051 | 0.082 | |
Zhuzhou | 0.309 | 0.233 | 0.211 | 0.196 | 0.177 | 0.157 | 0.146 | 0.142 | 0.138 | 0.121 | 0.183 | |
Xiangtan | 0.347 | 0.286 | 0.255 | 0.227 | 0.202 | 0.193 | 0.175 | 0.159 | 0.160 | 0.153 | 0.216 | |
Hengyang | 0.388 | 0.311 | 0.276 | 0.259 | 0.234 | 0.207 | 0.187 | 0.180 | 0.186 | 0.160 | 0.239 | |
Shaoyang | 0.615 | 0.480 | 0.428 | 0.396 | 0.358 | 0.321 | 0.293 | 0.268 | 0.250 | 0.203 | 0.361 | |
Yueyang | 0.315 | 0.277 | 0.238 | 0.219 | 0.200 | 0.205 | 0.194 | 0.194 | 0.179 | 0.159 | 0.218 | |
Changde | 0.409 | 0.240 | 0.298 | 0.267 | 0.246 | 0.230 | 0.212 | 0.200 | 0.200 | 0.181 | 0.258 | |
Zhangjiajie | 0.360 | 0.292 | 0.260 | 0.239 | 0.212 | 0.189 | 0.170 | 0.158 | 0.142 | 0.138 | 0.216 | |
Yiyang | 0.455 | 0.416 | 0.353 | 0.323 | 0.283 | 0.252 | 0.246 | 0.232 | 0.225 | 0.217 | 0.300 | |
Chenzhou | 0.363 | 0.294 | 0.263 | 0.242 | 0.217 | 0.200 | 0.180 | 0.173 | 0.160 | 0.159 | 0.225 | |
Yongzhou | 0.554 | 0.435 | 0.386 | 0.354 | 0.320 | 0.294 | 0.264 | 0.247 | 0.230 | 0.206 | 0.329 | |
Huaihua | 0.432 | 0.345 | 0.297 | 0.266 | 0.251 | 0.228 | 0.206 | 0.203 | 0.190 | 0.178 | 0.260 | |
Loudi | 0.430 | 0.311 | 0.279 | 0.251 | 0.234 | 0.200 | 0.179 | 0.177 | 0.163 | 0.155 | 0.238 | |
Xiangxi | 0.458 | 0.441 | 0.391 | 0.362 | 0.332 | 0.304 | 0.292 | 0.269 | 0.252 | 0.215 | 0.332 | |
Hunan Province | 0.329 | 0.268 | 0.236 | 0.215 | 0.196 | 0.179 | 0.164 | 0.155 | 0.148 | 0.136 | 0.203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Jiang, W.; Huang, L.; Li, Y.; Zhang, C.; Xiao, X.; Huang, Y. Evolution of Sustainable Water Resource Utilization in Hunan Province, China. Water 2022, 14, 2477. https://doi.org/10.3390/w14162477
Liu N, Jiang W, Huang L, Li Y, Zhang C, Xiao X, Huang Y. Evolution of Sustainable Water Resource Utilization in Hunan Province, China. Water. 2022; 14(16):2477. https://doi.org/10.3390/w14162477
Chicago/Turabian StyleLiu, Na, Wulin Jiang, Linjuan Huang, Yilong Li, Cicheng Zhang, Xiong Xiao, and Yimin Huang. 2022. "Evolution of Sustainable Water Resource Utilization in Hunan Province, China" Water 14, no. 16: 2477. https://doi.org/10.3390/w14162477