Effects of Polyester Microfibers on the Growth and Toxicity Production of Bloom-Forming Cyanobacterium Microcystis aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Algal Growth
2.4. Photosynthetic Pigments (Chlorophyll a) Content
2.5. Number and Size of Colonies of M. aeruginosa
2.6. Extracellular MCs Determination
2.7. Statistical Analysis
3. Results
3.1. The Growth of M. aeruginosa
3.2. Chlorophyll a Content
3.3. Number and Size of Colonies of M. aeruginosa
3.4. MC-LR Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
7d | 13d | 19d | 25d | |
---|---|---|---|---|
Concentration | NS | NS | NS | NS |
Color | * | NS | ** | NS |
Concentration × Color | NS | NS | NS | NS |
7d | 13d | 19d | 25d | |
---|---|---|---|---|
Concentration | NS | NS | NS | NS |
Color | ** | ** | ** | ** |
Concentration × Color | NS | NS | * | NS |
7d | 13d | 19d | 25d | |
---|---|---|---|---|
Concentration | NS | NS | ** | ** |
Color | ** | ** | ** | ** |
Concentration × Color | NS | ** | ** | ** |
References
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Fendall, L.; Sewell, M. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, J. Storm events as key moments of microplastic contamination in aquatic ecosystems. Sci. Total Environ. 2020, 734, 139436. [Google Scholar] [CrossRef]
- Sang, W.J.; Chen, Z.Y.; Mei, L.J.; Hao, S.W.; Zhan, C.; Zhang, W.B.; Li, M.; Liu, J. The abundance and characteristics of microplastics in rainwater pipelines in Wuhan, China. Sci. Total Environ. 2021, 755, 142606. [Google Scholar] [CrossRef]
- Sun, J.; Dai, X.; Wang, Q.; Loosdrecht, M.; Ni, B.J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef]
- Li, J.N.; Qu, X.Y.; Su, L.; Zhang, W.W.; Yang, D.Q.; Kolandhasamy, P.; Li, D.J.; Shi, H.H. Microplastics in mussels along the coastal waters of China. Environ. Pollut. 2016, 214, 177–184. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Galloway, T.S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol. 2015, 49, 1130–1137. [Google Scholar] [CrossRef]
- Su, L.; Cai, H.W.; Kolandhasamy, P.; Wu, C.X.; Rochman, C.; Shi, H.H. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 2018, 234, 347–355. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Zhao, J.Y.; Li, W.F.; Song, W.J.; Zhang, D.Y.; Pan, X.L. Retention of polystyrene particles of different sizes in zebrafish gills and their effect on toxicity of anthracene to gill cells. Chin. J. Appl. Environ. Biol. 2017, 23, 1154–1158. [Google Scholar]
- Lee, C.S.; Fisher, N. Bioaccumulation of methylmercury in a marine diatom and the influence of dissolved organic matter. Mar. Chem. 2017, 197, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Moriceau, B.; Gallinari, M.; Lambert, C.; Huvet, A.; Raffray, J.; Soudant, P. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Mar. Chem. 2015, 175, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Lin, V.S. Research highlights: Impacts of microplastics on plankton. Environ. Sci. Proc. Imp. 2016, 18, 160–163. [Google Scholar]
- Wei, N.; Yu, L.M.; Ru, H.J.; Wu, F.; Ni, Z.H. Characteristics and impact factors of phytoplankton communities in the backwater areas of the Three Gorges Reservoir typical tributaries. Freshw. Fish 2022, 52, 103–112. [Google Scholar]
- Mao, Y.F.; Ai, H.N.; Chen, Y.; Zhang, Z.Y.; Zeng, P.; Kang, L.; Li, W.; Gu, W.K.; He, Q.; Li, H. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere 2018, 208, 59–68. [Google Scholar] [CrossRef]
- Lagarde, F.; Olivier, O.; Zanella, M.; Daniel, P.; Hiard, S.; Caruso, A. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 2016, 215, 331–339. [Google Scholar] [CrossRef]
- Fu, D.D.; Zhang, Q.J.; Fan, Z.Q.; Qi, H.Y.; Wang, Z.Z.; Peng, L. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Aquat. Toxicol. 2019, 216, 105319. [Google Scholar] [CrossRef]
- Zheng, X.W.; Zhang, W.Z.; Yuan, Y.; Li, Y.Y.; Liu, X.L.; Wang, X.R.; Fan, Z.Q. Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 2021, 208, 111575. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.L.; Lei, Q.; Zhao, Y.; Wang, L.Q.; Wang, X.Y.; Zhang, W. Microplastic pollution in sophisticated urban river systems: Combined influence of land-use types and physicochemical characteristics. Environ. Pollut. 2021, 287, 117604. [Google Scholar] [CrossRef]
- Wang, W.F.; Ndungu, A.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 2016, 575, 1369–1374. [Google Scholar] [CrossRef]
- Su, L.; Xue, Y.G.; Li, L.Y.; Yang, D.Q.; Kolandhasamy, P.; Li, D.J.; Shi, H.H. Microplastics in Taihu Lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef]
- Peters, C.; Thomas, P.; Rieper, K.; Bratton, S. Foraging preferences influence microplastic ingestion by six marine fish species from the texas gulf coast. Mar. Pollut. Bull. 2017, 124, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.C.; Tao, J.Y.; Li, S.; Hao, S.P.; Zhu, X.Z.; Hong, Y.J. PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa. Ecotoxicol. Environ. Saf. 2018, 157, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.Q.; Li, D.H.; Liu, Y.D.; He, G.Y. Advances in ecotoxicology of microcystins on aquatic organisms. Adv. Nat. Sci. 2006, 16, 14–20. [Google Scholar]
- Wang, J.H.; Li, J.L.; Jiang, D.S.; Wu, H.H.; Wang, S.G.; Lin, A.J. The potential impact of phosphorus concentration in typical lakes in China on water body indicators and cyanobacteria bloom trends based on meta-analysis. J. Beijing Univ. Chem. Technol. 2021, 48, 59–67. [Google Scholar]
- Yang, Z.; Kong, F.X.; Shi, X.L.; Cao, H.S. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 2006, 563, 225–230. [Google Scholar] [CrossRef]
- Wu, D.; Wang, T.; Wang, J.; Jiang, L.J.; Yin, Y.; Guo, H.Y. Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production. Sci. Total Environ. 2020, 761, 143265. [Google Scholar] [CrossRef]
- Sánchez-Fortún, A.; Fajardo, C.; Martín, C.; D’ors, A.; Nande, M.; Mengs, G.; Costa, G.; Martín, M.; Sánchez-Fortún, S. Effects of polyethylene-type microplastics on the growth and primary production of the freshwater phytoplankton species Scenedesmus armatus and Microcystis aeruginosa. Environ. Exp. Bot. 2021, 188, 104510. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Lin, S.J.; Turner, P.; Ke, C.P. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. C. 2010, 114, 16556–16561. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Li, Y.; Li, B.W. Is color a matter of concern during microplastic exposure to Scenedesmus obliquus and Daphnia magna? J. Hazard. Mater. 2020, 383, 121224. [Google Scholar] [CrossRef]
- Liu, L.; Qi, H.; Qin, B.; Zhu, G.; Li, L. Characterizing cell surface of blooming Microcystis in Lake Taihu, China. Water Sci. Technol. 2016, 73, 2731. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Gao, R.; Abdurahman, A.; Dai, J.; Zeng, F. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter. Environ. Pollut. 2018, 237, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Paul-Pont, I.; Hegaret, H.; Moriceau, B.; Lambert, C.; Huvet, A.; Soudant, P. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation. Environ. Pollut. 2017, 228, 454–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Feng, W.B.; Yuan, M.Z.; Zhang, W.; Xu, H.T.; Zheng, X.Y.; Wang, L.Q. Biochemical responses of the freshwater microalga Dictyosphaerium sp. upon exposure to three sulfonamides. J. Environ. Sci. 2020, 97, 141–148. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Q.; Zhang, T.T.; Sun, Y.C.; He, P.; Ji, L.; Zhang, M.; Deng, D.G. Phytoplankton community structure and biological evaluation of water quality in the middle and lower Ganjiang River. J. Hydroecol. 2020, 41, 68–76. [Google Scholar]
- Xie, P.; Liu, H.G.; Pan, H.Y.; Tian, H.L.; Huang, Y.P. Effects of pyrene at low concentration on growth and toxin production of Microcystis aeruginosa at different pH values. Environ. Sci. Tech. 2020, 43, 33–40. [Google Scholar]
- Li, C.X.; Gao, Y.X.; Zhang, J.Q.; Xu, L.X.; Liu, Z.L.; Miao, L.Z.; Hou, J. Structure and community composition of algae attached to different microplastic substrates. China Environ. Sci. 2020, 40, 3360–3366. [Google Scholar]
- Wang, Y.X.; Yan, C.H.; Cong, W. Stability and biofouling behavior of plastic films in microalgae cultivation. China J. Process Eng. 2020, 20, 74–83. (In Chinese) [Google Scholar]
- Muzzopappa, F.; Kirilovsky, D. Changing color for photoprotection: The orange carotenoid protein. Trends Plant Sci. 2020, 25, 92–104. [Google Scholar] [CrossRef]
- Xu, L.; Pan, W.W.; Yang, G.J.; Tang, X.M.; Martin, R.; Liu, G.F.; Zhong, C.N. Impact of light quality on freshwater phytoplankton community in outdoor mesocosms. Environ. Sci. Pollut. Res. Int. 2021, 28, 58536–58548. [Google Scholar] [CrossRef] [PubMed]
- Stockenreiter, M.; Navarro, J.; Buchberger, F.; Stibor, H. Community shifts from eukaryote to cyanobacteria dominated phytoplankton: The role of mixing depth and light quality. Freshw. Biol. 2021, 66, 2145–2157. [Google Scholar] [CrossRef]
- Mattson, M.; Calabrese, E. Hormesis: What it is and why it matters. In Hormesis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–13. [Google Scholar]
- Zhu, Y.C.; Xu, J.H.; Lu, T.; Zhang, M.; Ke, M.J.; Fu, Z.W.; Pan, X.L.; Qian, H.F. A comparison of the effects of copper nanoparticles and copper sulfate on Phaeodactylum tricornutum physiology and transcription. Environ. Toxicol. Pharmacol. 2017, 56, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Mykhaylenko, N.; Zolotareva, E. The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale Res. Lett. 2017, 12, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Chen, X.H.; Wang, J.T.; Tan, L.J. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environ. Pollut. 2017, 220, 1282–1288. [Google Scholar] [CrossRef]
- Schwab, F.; Bucheli, T.; Lukhele, L.; Magrez, A.; Nowack, B.; Sigg, L.; Knauer, K. Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ. Sci. Technol. 2011, 45, 6136–6144. [Google Scholar] [CrossRef]
- Reynolds, C.; Jaworski, G.; Cmiech, H.; Leedale, G. On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz Emend. Elenkin. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1981, 293, 419–477. [Google Scholar]
- Wu, Z.X.; Gan, N.Q.; Huang, Q.; Song, L.R. Response of Microcystis to copper stress–Do phenotypes of Microcystis make a difference in stress tolerance? Environ. Pollut. 2007, 147, 324–330. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, H.H.; Peng, J.P.; Xiong, X.; Wu, C.X.; Wang, Y.; Lam, P. Microplastic pollution in China’s inland water systems: A review of findings, methods, characteristics, effects, and management. Sci. Total Environ. 2018, 630, 1641–1653. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Gao, L.; Lin, Y.Y.; Pan, B.Z.; Li, M. Micrometer scale polystyrene plastics of varying concentrations and particle sizes inhibit growth and upregulate microcystin-related gene expression in Microcystis aeruginosa. J. Hazard. Mater. 2021, 420, 126591. [Google Scholar] [CrossRef]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baur`es, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed]
MP Type | Density (g/mL) | Size (mm) | Zeta Potential (mV) | FT-IR Spectra (Wavenumber/cm−1) | Contain |
---|---|---|---|---|---|
Green mPET | 1.68 | 1.93–2.54 | −22.89 | 729, 860, 1031, 1718–1249 | -- |
White mPET | 1.68 | 1.85–2.19 | −22.89 | 729, 860, 1031, 1718–1249 | 30% glass particles as reinforce |
Black mPET | 1.68 | 1.75–2.42 | −22.89 | 729, 860, 1031, 1718–1249 | 45% glass particles as reinforce |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Huang, R.; Wang, J.; Wang, L.; Zhang, W. Effects of Polyester Microfibers on the Growth and Toxicity Production of Bloom-Forming Cyanobacterium Microcystis aeruginosa. Water 2022, 14, 2422. https://doi.org/10.3390/w14152422
Lu Y, Huang R, Wang J, Wang L, Zhang W. Effects of Polyester Microfibers on the Growth and Toxicity Production of Bloom-Forming Cyanobacterium Microcystis aeruginosa. Water. 2022; 14(15):2422. https://doi.org/10.3390/w14152422
Chicago/Turabian StyleLu, Yufan, Ruohan Huang, Jialin Wang, Liqing Wang, and Wei Zhang. 2022. "Effects of Polyester Microfibers on the Growth and Toxicity Production of Bloom-Forming Cyanobacterium Microcystis aeruginosa" Water 14, no. 15: 2422. https://doi.org/10.3390/w14152422
APA StyleLu, Y., Huang, R., Wang, J., Wang, L., & Zhang, W. (2022). Effects of Polyester Microfibers on the Growth and Toxicity Production of Bloom-Forming Cyanobacterium Microcystis aeruginosa. Water, 14(15), 2422. https://doi.org/10.3390/w14152422