On the Relationship of Arctic Oscillation with Atmospheric Rivers and Snowpack in the Western United States Using Long-Term Multi-Platform Dataset
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. MERRA2
2.1.2. Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG)
2.1.3. Arctic Oscillation (AO), Snow Water Equivalent (SWE), Rain-On-Snow (ROS), and Local Land Precipitation
2.2. Methodology
Percentage Difference, Anomaly Calculation, and Correlation Analysis
3. Results
3.1. Synoptic Characteristics of ARs in Different Phases of AO
3.1.1. Examples of SLP and Wind Features in Different Phases of AO
3.1.2. Composites of SLP, Wind Speed, and Vertically Integrated Water Vapor Flux
3.2. Different AR Characteristics during the Different Phases of AO
AR Intensity, Duration, and Frequency
3.3. SWE Characteristics over Northern California during the Different Phases of AO
3.3.1. SWE and ROS Events in Relation to AO
3.3.2. Change in SWE in Association with Temperature, SLP, and AO
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Newell, R.E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 1998, 126, 725–735. [Google Scholar] [CrossRef]
- Rutz, J.; Steenburgh, W.J.; Ralph, F.M. Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Weather Rev. 2014, 142, 905–921. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E. Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos. 2015, 120, 12514–12535. [Google Scholar] [CrossRef]
- Shields, C.A.; Rutz, J.J.; Leung, L.-Y.; Ralph, F.M.; Wehner, M.; Kawzenuk, B.; Lora, J.M.; McClenny, E.; Osborne, T.; Payne, A.E.; et al. Atmospheric river tracking method intercomparison project (ARTMIP): Project goals and experimental design. Geosci. Model Dev. 2018, 11, 2455–2474. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Kim, H.; Guan, B. Lifecycle of atmospheric rivers: Identification and climatological characteristics. J. Geophys. Res. Atmos. 2018, 123, 12715–12725. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E. Tracking atmospheric rivers globally: Spatial distributions and temporal evolution of life cycle characteristics. J. Geophys. Res. Atmos. 2014, 124, 12523–12552. [Google Scholar] [CrossRef]
- Ralph, F.M.; Dettinger, M.D. Storms, floods, and the science of atmospheric rivers. Eos. Trans. AGU 2011, 92, 265–266. [Google Scholar] [CrossRef] [Green Version]
- Newell, R.E.; Newell, N.E.; Zhu, Y.; Scott, C. Tropospheric rivers?—A pilot study. Geophys. Res. Lett. 1992, 19, 2401–2404. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Newell, R.E. Atmospheric rivers and bombs. Geophys. Res. Lett. 1994, 21, 1999–2002. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric rivers, floods and the water resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
- Ralph, F.M.; Coleman, T.; Neiman, P.J.; Zamora, R.J.; Dettinger, M.D. Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeorol. 2013, 14, 443–459. [Google Scholar] [CrossRef] [Green Version]
- Dettinger, M.D. Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeorol. 2013, 14, 1721–1732. [Google Scholar] [CrossRef]
- Guan, B.; Waliser, D.E.; Ralph, F.M.; Fetzer, E.J.; Neiman, P.J. Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett. 2016, 43, 2964–2973. [Google Scholar] [CrossRef] [Green Version]
- Goldenson, N.; Leung, L.R.; Bitz, C.M.; Blanchard-Wrigglesworth, E. Influence of atmospheric rivers on mountain snowpack in the western United States. J. Clim. 2018, 31, 9921–9940. [Google Scholar] [CrossRef]
- Ryoo, J.-M. Coauthors Terrain trapped airflows and precipitation variability during an atmospheric river event. J. Hydrometeorol. 2020, 21, 355–375. [Google Scholar] [CrossRef]
- Guan, B.; Molotch, N.P.; Waliser, D.E.; Fetzer, E.J.; Neiman, P.J. The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res. 2013, 49, 6731–6743. [Google Scholar] [CrossRef]
- McCabe-Glynn, S.; Johnson, K.R.; Strong, C.; Zou, Y.; Yu, J.Y.; Sellars, S.; Welker, J.M. Isotopic signature of extreme precipitation events in the western U.S. and associated phases of Arctic and tropical climate modes. J. Geophys. Res. Atmos. 2016, 121, 8913–8924. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Centers for Environmental Information. Home/Climate Monitoring/ENSO/Technical Discussion. 2022. Available online: https://www.ncdc.noaa.gov/teleconnections/enso/technical-discussion (accessed on 2 May 2022).
- Ryoo, J.-M.; Kaspi, Y.; Waugh, D.W.; Kiladis, G.N.; Waliser, D.E.; Fetzer, E.J.; Kim, J. Impact of Rossby wave breaking on US West Coast winter precipitation during ENSO events. J. Clim. 2013, 26, 6360–6382. [Google Scholar] [CrossRef] [Green Version]
- Kamae, Y.; Mei, W.; Xie, S.P.; Naoi, M.; Ueda, H. Atmospheric rivers over the northwestern Pacific: Climatology and interannual variability. J. Clim. 2017, 30, 5605–5619. [Google Scholar] [CrossRef]
- Matsuo, K.; Heki, K. Anomalous precipitation signatures of the Arctic Oscillation in the time-variable gravity field by GRACE. Geophys. J. Int. 2012, 190, 1495–1506. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Chiang, J.C. Atmospheric river lifecycle characteristics shaped by synoptic conditions at genesis. Int. J. Climatol. 2022, 42, 521–538. [Google Scholar] [CrossRef]
- NASA Goddard Space Flight Center. Available online: https://gpm.nasa.gov/science/atmospheric-river-slams-california (accessed on 16 October 2021).
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Bosilovich, M.G.; Lucchesi, R.; Suarez, M. MERRA-2: File Specification. GMAO Office Note No. 9; Version 1.1; Global Modeling and Assimilation Office: Greenbelt, MD, USA, 2016; p. 73. Available online: http://gmao.gsfc.nasa.gov/pubs/office_notes (accessed on 31 July 2022).
- Global Modeling and Assimilation Office (GMAO). inst3_3d_asm_Cp: MERRA-2 3D IAU State, Meteorology Instantaneous 3-Hourly (p-coord, 0.625x0.5L42); Version 5.12.4; Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC): Greenbelt, MD, USA, 2015. [CrossRef]
- Global Modeling and Assimilation Office (GMAO). instM_3d_asm_Np: MERRA-2 3D IAU State, Meteorology Instantaneous 3-Dimensional Monthly Mean Data (p-coord, 0.625x0.5L42); Version 5.12.4; Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC): Greenbelt, MD, USA, 2015. [CrossRef]
- Global Modeling and Assimilation Office (GMAO). inst1_2d_int_Nx: MERRA-2 2D IAU State, Meteorology Instantaneous 2-Dimensional Monthly Mean Data (p-coord, 0.625x0.5L42); Version 5.12.4; Goddard Space Flight Center Distributed Active Archive Center (GSFC DAAC): Greenbelt, MD, USA, 2015. [CrossRef]
- Collow, A.B.M.; Shields, C.A.; Guan, B.; Kim, S.; Lora, J.M.; McClenny, E.E.; Nardi, K.; Payne, A.; Reid, K.; Shearer, E.J.; et al. An overview of ARTMIP’s Tier 2 Reanalysis Intercomparison: Uncertainty in the detection of atmospheric rivers and their associated precipitation. J. Geophys. Res. Atmos. 2022, 127, e2021JD036155. [Google Scholar] [CrossRef]
- Cobb, A.; Delle Monache, L.; Cannon, F.; Ralph, F.M. Representation of dropsonde-observed atmospheric river conditions in reanalyses. Geophys. Res. Lett. 2021, 48, e2021GL093357. [Google Scholar] [CrossRef]
- Ralph, F.M.; Rutz, J.J.; Cordeira, J.M.; Dettinger, M.D.; Anderson, M.; Reynolds, D.; Schick, L.J.; Smallcomb, C. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteorol. Soc. 2019, 100, 269–289. [Google Scholar] [CrossRef]
- NASA EARTHDATA GPM IMERG Final Precipitation L3 1 month 0.1 degree × 0.1 degree V06 (GPM_3IMERGM). 2020. Available online: https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06/summary?keywords=3B-HHR-L.MS.MRG.3IMERG (accessed on 7 April 2020).
- Tapiador, F.J.; Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Marcos, C.; Kummerow, C. The contribution of rain gauges in the calibration of the IMERG product: Results from the first validation over Spain. J. Hydrometeorol. 2020, 21, 161–182. [Google Scholar] [CrossRef]
- Gentilucci, M.; Pambianchi, G. Prediction of Snowmelt Days Using Binary Logistic Regression in the Umbria-Marche Apennines (Central Italy). Water 2022, 14, 1495. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The CloudSat mission and the A-Train: A new dimension to space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Naud, C.M.; Jeyaratnam, J.; Booth, J.F.; Zhao, M.; Gettelman, A. Evaluation of Modeled Precipitation in oceanic Extratropical Cyclones using IMERG. J. Clim. 2020, 33, 95–113. [Google Scholar] [CrossRef]
- Naud, C.M.; Booth, J.F.; Lebsock, M.; Grecu, M. Observational constraint for precipitation in extratropical cyclones: Sensitivity to data sources. J. Appl. Meteorol. Climatol. 2018, 57, 991–1009. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Grecu, M.; Olson, W.S.; Munchak, S.J.; Ringerud, S.; Liao, L.; Haddad, Z.; Kelley, B.L.; McLaughlin, S.F. The GPM combined algorithm. J. Atmos. Ocean. Technol. 2016, 33, 2225–2245. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Centers for Environmental Information. Arctic Oscillation (AO). 2021. Available online: https://www.ncdc.noaa.gov/teleconnections/ao/ (accessed on 9 February 2021).
- Department of Water Resources. CDEC Webservice JSON and CSV. 2021. Available online: https://cdec.water.ca.gov/dynamicapp/wsSensorData (accessed on 11 September 2021).
- Scherrer, S.C. Temperature monitoring in mountain regions using reanalyses: Lessons from the Alps. Environ. Res. Lett. 2020, 15, 044005. [Google Scholar] [CrossRef]
- Harris, S.M.; Carvalho, L.M.V. Characteristics of southern California atmospheric rivers. Theor. Appl. Climatol. 2018, 132, 965–981. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.W.J.; Wallace, J.M. Annular Modes in the Extratropical Circulation. Part I: Month-To-Month Variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Bonner, W.D. Climatology of the low-level jet. Mon. Weather Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef] [Green Version]
- Brill, K.F.; Uccellini, L.W.; Burkhart, R.P.; Warner, T.T.; Anthes, R.A. Numerical Simulations of a Transverse Indirect Circulation and Low-Level Jet in the Exit Region of an Upper-Level Jet. J. Atmos. Sci. 1985, 42, 1306–1320. [Google Scholar] [CrossRef] [Green Version]
- Zechiel, P.R.; Chiao, S. Climate Variability of Atmospheric Rivers and Droughts over the West Coast of the United States from 2006 to 2019. Atmosphere 2021, 12, 201. [Google Scholar] [CrossRef]
- Climate. 2021. Available online: https://www.climate.gov/news-features/understanding-climate/climate-variability-arctic-oscillation (accessed on 15 July 2022).
- NASA. 2021. Available online: https://www.nasa.gov/press-release/2020-tied-for-warmest-year-on-record-nasa-analysis-shows (accessed on 30 July 2022).
- Chen, S.; Chen, W.; Yu, B. Modulation of the relationship between spring AO and the subsequent winter ENSO by the preceding November AO. Sci. Rep. 2018, 8, 6943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeley, J.E.; Syphard, A.D. Large California Wildfires: 2020 fires in historical context. Fire Ecol. 2021, 17, 22. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liner, S.; Ryoo, J.-M.; Chiao, S. On the Relationship of Arctic Oscillation with Atmospheric Rivers and Snowpack in the Western United States Using Long-Term Multi-Platform Dataset. Water 2022, 14, 2392. https://doi.org/10.3390/w14152392
Liner S, Ryoo J-M, Chiao S. On the Relationship of Arctic Oscillation with Atmospheric Rivers and Snowpack in the Western United States Using Long-Term Multi-Platform Dataset. Water. 2022; 14(15):2392. https://doi.org/10.3390/w14152392
Chicago/Turabian StyleLiner, Samuel, Ju-Mee Ryoo, and Sen Chiao. 2022. "On the Relationship of Arctic Oscillation with Atmospheric Rivers and Snowpack in the Western United States Using Long-Term Multi-Platform Dataset" Water 14, no. 15: 2392. https://doi.org/10.3390/w14152392
APA StyleLiner, S., Ryoo, J.-M., & Chiao, S. (2022). On the Relationship of Arctic Oscillation with Atmospheric Rivers and Snowpack in the Western United States Using Long-Term Multi-Platform Dataset. Water, 14(15), 2392. https://doi.org/10.3390/w14152392