# Numerical Limit Analysis of the Stability of Reinforced Retaining Walls with the Strength Reduction Method

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Limit Analysis

#### 2.1. Theory

#### 2.2. Lower-Bound Principle

#### 2.3. Upper-Bound Principle

#### 2.4. Mesh Detail

## 3. Verification of the Numerical Model

#### 3.1. Case 3-1

#### 3.2. Case 3-2

## 4. Parametric Study and Results

#### 4.1. Numerical Model

#### 4.1.1. Parameter Value Ranges and Baseline Case

#### 4.1.2. Geometry and Boundary Conditions

#### 4.1.3. Soil Constitutive Models and Properties

#### 4.1.4. Reinforcement Properties

#### 4.1.5. Interface Properties

#### 4.1.6. Critical Reinforcement Lengths

#### 4.2. Wall Height

#### 4.3. Reinforcement Spacing

#### 4.4. Horizontal Seismic Load Originating from Earthquake

_{h}/g

_{v}, with g

_{v}= 9.8 m/s

^{2}, were considered. The effect of the seismic load, ranging from 0.05 g to 0.2 g, on the critical reinforcement length is shown in Figure 11. An increase in seismic coefficient value required a larger critical length of the reinforcement to satisfy the stability requirements of the sliding and global failure modes.

## 5. Recommendations for Design

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Bilgin, Ö. Failure mechanisms governing reinforcement length of geogrid reinforced soil retaining walls. Eng. Struct.
**2009**, 31, 1967–1975. [Google Scholar] [CrossRef] - Chen, J.-F.; Liu, J.-X.; Xue, J.-F.; Shi, Z.-M. Stability analyses of a reinforced soil wall on soft soils using strength reduction method. Eng. Geol.
**2014**, 177, 83–92. [Google Scholar] [CrossRef] - Song, F.; Liu, H.; Ma, L.; Hu, H. Numerical analysis of geocell-reinforced retaining wall failure modes. Geotext. Geomembr.
**2018**, 46, 284–296. [Google Scholar] [CrossRef] - Pang, R.; Xu, B.; Zhou, Y.; Song, L. Seismic time-history response and system reliability analysis of slopes considering uncertainty of multi-parameters and earthquake excitations. Comput. Geotech.
**2021**, 136, 104245. [Google Scholar] [CrossRef] - Fathipour, H.; Payan, M.; Chenari, R.J. Limit analysis of lateral earth pressure on geosynthetic-reinforced retaining structures using finite element and second-order cone programming. Comput. Geotech.
**2021**, 134, 104119. [Google Scholar] [CrossRef] - Pang, R.; Xu, B.; Kong, X.J.; Zhou, Y.; Zou, D.G. Seismic performance evaluation of high CFRD slopes subjected to near-fault ground motions based on generalized probability density evolution method. Eng. Geol.
**2018**, 246, 391–401. [Google Scholar] [CrossRef] - Pang, R.; Xu, B.; Zou, D.G.; Kong, X.J. Stochastic seismic performance assessment of high CFRDs based on generalized probability density evolution method. Comput. Geotech.
**2018**, 97, 233–245. [Google Scholar] [CrossRef] - Pang, R.; Xu, B.; Kong, X.J.; Zou, D.G.; Zhou, Y. Seismic reliability assessment of earth-rockfill dam slopes considering strain-softening of rockfill based on generalized probability density evolution method. Soil Dyn. Earthq. Eng.
**2018**, 107, 96–107. [Google Scholar] [CrossRef] - Pang, R.; Xu, B.; Zhou, Y.; Zhang, X.; Wang, X.L. Fragility analysis of high CFRDs subjected to mainshock-aftershock sequences based on plastic failure. Eng. Struct.
**2020**, 206, 110152. [Google Scholar] [CrossRef] - Li, Y.; Pang, R.; Xu, B.; Wang, X.; Fan, Q.; Jiang, F. GPDEM-based stochastic seismic response analysis of high concrete-faced rockfill dam with spatial variability of rockfill properties based on plastic deformation. Comput. Geotech.
**2021**, 139, 104416. [Google Scholar] [CrossRef] - Xu, B.; Pang, R.; Zhou, Y. Verification of stochastic seismic analysis method and seismic performance evaluation based on multi-indices for high CFRDs. Eng. Geol.
**2020**, 264, 105412. [Google Scholar] [CrossRef] - Zai, D.; Pang, R.; Xu, B.; Fan, Q.; Jing, M. Slope system stability reliability analysis with multi-parameters using generalized probability density evolution method. B. Eng. Geol. Environ.
**2021**, 80, 8419–8431. [Google Scholar] [CrossRef] - Jiang, Y.; Han, J.; Zornberg, J.; Parsons, R.L.; Leshchinsky, D.; Tanyu, B. Numerical analysis of field geosynthetic-reinforced retaining walls with secondary reinforcement. Géotechnique
**2019**, 69, 122–132. [Google Scholar] [CrossRef] - Jiang, Y.; Han, J.; Parsons, R.L.; Brennan, J.J. Field Instrumentation and Evaluation of Modular-Block MSE Walls with Secondary Geogrid Layers. J. Geotech. Geoenviron. Eng.
**2016**, 142, 05016002. [Google Scholar] [CrossRef] - Yazdandoust, M.; Ghalandarzadeh, A. Pseudo-Static Coefficient in Reinforced Soil Structures. Int. J. Phys. Model. Geotech.
**2020**, 20, 320–337. [Google Scholar] [CrossRef] - Razeghi, H.R.; Viswanadham, B.; Mamaghanian, J. Centrifuge and numerical model studies on the behaviour of geogrid reinforced soil walls with marginal backfills with and without geocomposite layers. Geotext. Geomembr.
**2019**, 47, 671–684. [Google Scholar] [CrossRef] - Safaee, A.M.; Mahboubi, A.; Noorzad, A. Experimental investigation on the performance of multi-tiered geogrid mechanically stabilized earth (MSE) walls with wrap-around facing subjected to earthquake loading. Geotext. Geomembr.
**2020**, 49, 130–145. [Google Scholar] [CrossRef] - Bilgin, Ö.; Mansour, E. Effect of reinforcement type on the design reinforcement length of mechanically stabilized earth walls. Eng. Struct.
**2014**, 59, 663–673. [Google Scholar] [CrossRef] - Leshchinsky, D.; Kang, B.; Han, J.; Ling, H. Framework for Limit State Design of Geosynthetic-Reinforced Walls and Slopes. Transp. Infrastruct. Geotechnol.
**2014**, 1, 129–164. [Google Scholar] [CrossRef] - Reed, E.C.; Vandenberge, D.R. Comparison of FEA and analytical methods for determining stability of a RAP supported MSE wall. DFI J. J. Deep Found. Inst.
**2018**, 12, 122–129. [Google Scholar] [CrossRef] - Liu, S.; Su, Z.; Li, M.; Shao, L. Slope stability analysis using elastic finite element stress fields. Eng. Geol.
**2020**, 273, 105673. [Google Scholar] [CrossRef] - Hassen, G.; Donval, E.; De Buhan, P. Numerical stability analysis of reinforced soil structures using the multiphase model. Comput. Geotech.
**2021**, 133, 104035. [Google Scholar] [CrossRef] - Kazimierowicz-Frankowska, K.; Kulczykowski, M. Deformation of model reinforced soil structures: Comparison of theoretical and experimental results. Geotext. Geomembr.
**2021**, 49, 1176–1191. [Google Scholar] [CrossRef] - Mirmoradi, S.; Ehrlich, M.; Magalhães, L. Numerical evaluation of the effect of foundation on the behaviour of reinforced soil walls. Geotext. Geomembr.
**2021**, 49, 619–628. [Google Scholar] [CrossRef] - Xu, P.; Yang, G.; Li, T.; Hatami, K. Finite element limit analysis of bearing capacity of footing on back-to-back reinforced soil retaining walls. Transp. Geotech.
**2021**, 30, 100596. [Google Scholar] [CrossRef] - OptumCE. OptumG2 v. 2021. Available online: https://optumce.com/products/brochure-and-datasheet/ (accessed on 24 January 2021).
- Sloan, S. Geotechnical stability analysis. Géotechnique
**2013**, 63, 531–571. [Google Scholar] [CrossRef] [Green Version] - Drucker, D.C.; Prager, W. Soil mechanics and plastic analysis or limit design. Q. Appl. Math.
**1952**, 10, 157–165. [Google Scholar] [CrossRef] [Green Version] - Schmüdderich, C.; Lavasan, A.A.; Tschuchnigg, F.; Wichtmann, T. Behavior of Nonidentical Differently Loaded Interfering Rough Footings. J. Geotech. Geoenviron. Eng.
**2020**, 146, 04020041. [Google Scholar] [CrossRef] - Lyamin, A.; Sloan, S.W. Upper bound limit analysis using linear finite elements and non-linear programming. Int. J. Numer. Anal. Methods Géoméch.
**2002**, 26, 181–216. [Google Scholar] [CrossRef] - Sloan, S.W. Lower bound limit analysis using finite elements and linear programming. Int. J. Numer. Anal. Methods Géoméch.
**1988**, 12, 61–77. [Google Scholar] [CrossRef] - Lyamin, A.V.; Sloan, S.W.; Krabbenhøft, K.; Hjiaj, M. Lower bound limit analysis with adaptive remeshing. Int. J. Numer. Methods Eng.
**2005**, 63, 1961–1974. [Google Scholar] [CrossRef] - Zornberg, J.G.; Sitar, N.; Mitchell, J.K. Limit Equilibrium as Basis for Design of Geosynthetic Reinforced Slopes. J. Geotech. Geoenviron. Eng.
**1998**, 124, 684–698. [Google Scholar] [CrossRef] [Green Version] - Vulova, C.; Leshchinsky, D. Effects of Geosynthetic Reinforcement Spacing on the Performance of Mechanically Stabilized Earth Walls; No. FFHWA-RD-03-048; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2003. [Google Scholar]
- Berg, R.R.; Christopher, B.R.; Samtani, N.C. Design of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes–Volume I; No. FHWA-NHI-10-024; United States, Department of Transportation, Federal Highway Administration: Washington, DC, USA, 2009. [Google Scholar]
- Koerner, R.M.; Koerner, G.R. An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls. Geotext. Geomembr.
**2018**, 46, 904–912. [Google Scholar] [CrossRef] - Yu, Y.; Bathurst, R.J.; Allen, T.M. Numerical Modeling of the SR-18 Geogrid Reinforced Modular Block Retaining Walls. J. Geotech. Geoenviron. Eng.
**2016**, 142, 04016003. [Google Scholar] [CrossRef]

**Figure 1.**Comparison of the different numbers of elements. (

**a**) Safety factor = 0.8752 (elements = 10,000). (

**b**) Safety factor = 0.8781 (elements = 20,000).

Input Data | Case 3-1 | Case 3-2 |
---|---|---|

Wall height | 8.2 | 12.1 |

Reinforcement spacing (m) | 0.4 | 1.34 |

Reinforcement length (m) | 1.5 | 7.5 |

Reinforcement soil unit weight (kN/m^{3}) | 22 | 15.64 |

Reinforcement soil angle of friction (°) | 45 | 39.5 |

Retaining soil unit weight (kN/m^{3}) | 22 | 15.64 |

Retaining soil angle of friction (°) | 45 | 39.5 |

Foundation soil unit weight (kN/m^{3}) | 22 | 15.64 |

Foundation soil angle of friction (°) | 45 | 39.5 |

Ultimate strength of geogrid reinforcement (kN/m) | 9.0 | 10.0 |

Soil–geogrid angle of friction (°) | 35 | 39 |

Safety Factor | Lower Bound | Upper Bound | Average Value | FLAC Analysis |
---|---|---|---|---|

Case 3-1 | 1.039 | 1.110 | 1.075 | 1.09 (1) |

Material | Reinforced Soil | Retained Soil | Foundation Soil | Block Facing |
---|---|---|---|---|

Constitutive mode | Mohr-Coulomb | Mohr-Coulomb | Linearly elastic | Linearly elastic |

Unit weight (kN/m^{3}) | 18 | 18 | 18 | 23 |

Young’s modulus (MPa) | 20 | 20 | 2000 | - |

Poisson’s ratio | 0.3 | 0.3 | 0.3 | - |

Cohesion (kPa) | 0 | 0 | 0 | - |

Friction angle (°) | 35 | 35 | 35 | 35 |

Dilation angle (°) | 5 | 5 | 5 | - |

Materials | Secant Stiffness at 2%, J _{2%} (kN/m^{2}) | Tensile Strength (kN/m^{2}) |
---|---|---|

geogrid | 400 | 20 |

Interface | Friction Angle (°) | Dilation Angle (°) | Cohesion (kPa) | Normal | Shear Stiffness |
---|---|---|---|---|---|

Backfill-reinforcement | 35 | 5 | 0 | - | - |

Block-reinforcement | 25 | 0 | 0 | - | - |

Case | Parameter in the Numerical Model | Failure Mechanism | |||
---|---|---|---|---|---|

Wall Height (m) | Reinforcement Length (m) | Reinforcement Space (m) | K (g) | ||

1 | 6 | 2 | 0.6 | 0 | |

2 | 10 | 3 | 0.6 | 0 | |

3 | 13 | 4 | 0.6 | 0 | |

4 | 6 | 9 | 0.6 | 0 | |

5 | 10 | 10 | 0.6 | 0 | |

6 | 13 | 12 | 0.6 | 0 | |

7 | 10 | 2 | 0.4 | 0 | |

8 | 10 | 3 | 0.6 | 0 | |

9 | 10 | 5 | 0.9 | 0 | |

10 | 10 | 8 | 0.4 | 0 | |

11 | 10 | 8 | 0.6 | 0 | |

12 | 10 | 9 | 0.9 | 0 | |

13 | 10 | 5 | 0.6 | 0.1 | |

14 | 10 | 7 | 0.6 | 0.2 | |

15 | 10 | 12 | 0.6 | 0.1 | |

16 | 10 | 15 | 0.6 | 0.2 |

Case | L/H | Length (m) |
---|---|---|

Base conditions | 0.8 | 12 |

Seismic loading | 0.9 | 15 |

Case | Spacing (m) |
---|---|

Base conditions | 0.7 |

Seismic loading | 0.5 |

Limited reinforcement length | 0.5 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Li, J.; Li, X.; Jing, M.; Pang, R.
Numerical Limit Analysis of the Stability of Reinforced Retaining Walls with the Strength Reduction Method. *Water* **2022**, *14*, 2319.
https://doi.org/10.3390/w14152319

**AMA Style**

Li J, Li X, Jing M, Pang R.
Numerical Limit Analysis of the Stability of Reinforced Retaining Walls with the Strength Reduction Method. *Water*. 2022; 14(15):2319.
https://doi.org/10.3390/w14152319

**Chicago/Turabian Style**

Li, Jinsheng, Xueqi Li, Mingyuan Jing, and Rui Pang.
2022. "Numerical Limit Analysis of the Stability of Reinforced Retaining Walls with the Strength Reduction Method" *Water* 14, no. 15: 2319.
https://doi.org/10.3390/w14152319