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Abstract: The failure mechanism of MSE (mechanically stabilized earth) walls was studied via nu-
merical analysis with the finite element strength reduction method, which was verified as an effective
technique by simulating the experimental results reported in previous papers. The finite element
program was applied to explore the effects of reinforcement, geometry, and seismic parameters
on failure mechanism control at the design stage of MSE walls to avoid the unavoidable errors
experienced in common numerical analysis caused by the assumptions of the failure mode and
complex input parameters. The research parameters included the wall height, length, and spacing
of the geogrid-reinforced retaining wall and seismic load. The results indicated that the wall height
and reinforcement length play a major role in failure mode change. When the reinforcement length
is less than 2 m, overturning failure could occur, which was unrelated to the other parameters in
all cases studied in this paper. In this paper, the parametric study results were presented by eval-
uating the critical reinforcement length, generating the failure surface pattern, and summarizing
design recommendation.

Keywords: numerical analysis; finite element strength reduction; parameter study; MSE walls;
failure mechanism

1. Introduction

MSE walls represent a more economical alternative to traditional gravity-type walls.
MSE walls are mainly applied in bridge abutments, wing walls, and areas where excavation
and slope construction cannot be conducted. Under poor foundation conditions, MSE walls
provide significant technical and cost advantages.

Over the past few decades, due to the contradiction between land restrictions and
infrastructure development, an increasing number of MSE walls has been applied in slope
construction and research [1–12]. Field experiments are an important way to study the
failure mechanism of MSE walls, which can be divided into full-scale and proportional
experiments [13–16]. The relationship among wall deflection, earth pressure behind the
wall, wall height, and the secondary geogrid was obtained by measuring the wall pressure
and strain in field experiments [13,14]. It was confirmed that secondary reinforcement
played an important role in decreasing wall-facing deflection and generating a uniform,
lateral earth-pressure distribution. Yazdandoust and Ghalandarzadeh [15] performed
shaking table scaled model tests to obtain the failure pattern of reinforced walls, which
reflects the influence of a nonuniform acceleration distribution on the value of the seismic
coefficient for reinforced soil structures. Safaee et al. [17] measured values of the most
critical dynamic parameters of single-layer and multi-layer walls subjected to different
seismic loads. The behavior of wall stability was obtained from the comparison of single-
layer and multi-layer walls.
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MSE wall stability analysis theory is also an effective way to explore the wall failure
mechanism. According to the limit equilibrium method, Bilgin [1] studied the effect of
the reinforcement length on the MSE wall failure mode. In his research, it was concluded
that the reinforcement length could be reduced to less than 70% of the wall height under
the condition of perfect parameters. In addition, the type of reinforcement exerted an
important impact on the wall stability [18]. However, simple theoretical analysis is limited
by the inherent shortcomings of analysis theory.

The most common research topic in numerical parameter analysis is the limit equilib-
rium theory, which constitutes the theoretical basis of current design manuals [2,13,19,20].
The influence of the extension and the strengthening of the stability of reinforced soil
wall was studied by using the finite element model [2]. Leshchinsky et al. [19] proposed
a new limit analysis framework verified by parametric analysis. Their research results
revealed that the proposed framework was reasonable, including the influence of facing
blocks, seismicity, reinforcement length, and secondary reinforcement. Finite element
analysis of MSE walls yielded more accurate results, but the calculation process is time-
consuming [20]. By examining the overall stability evaluation of the finite element method,
Razeghi et al. [16] provided suggestions for wall designers to quickly check the overall
stability of retaining walls. Jiang et al. [13] indicated that secondary reinforcement resulted
in a uniform, lateral earth-pressure distribution. However, these simulation experiments
were based on theoretical analysis of the slope stability, which often produced a high safety
factor for circular failure surfaces and a low safety factor for V-shaped failure surfaces.
Liu et al. [21] proposed a novel finite element limit equilibrium method (FELEM) to enhance
the applicability of slope stability of FELEM which was validated by five slope problems.
The limit equilibrium method must assume a general form of the failure mechanism for
calculation, which often leads to inaccurate calculation results [5]. The influence of geosyn-
thetic reinforcement on the stability of the retaining structure was conducted by using the
finite element limit analysis method. Hassen et al. [22] proposed a new calculation method
(multiphase model) to numerically analyze the stability of reinforced soil structures which
showed good performance and computing capabilities. Kazimierowicz-Frankowska and
Kulczykowski [23] analyzed that the selected analysis method can accurately predict the
deformation of reinforced soil structure under service load. By numerical analysis, Mir-
moradi et al. [24] studied the factors affecting the foundation stability, including foundation
stiffness and geometry, wall height, and reinforcement stiffness. The numerical model
calculation carried out parameter analysis to investigate the influence of the reinforcement
spacing, wall height, and foundation location, and reinforcement design on the stability
of back-to-back reinforced soil-retaining walls [25]. The limit equilibrium method must
assume a general form of the failure mechanism for calculation, which often leads to in-
accurate calculation results. Finite element analysis of MSE walls yielded more accurate
results, but the calculation process is time consuming.

The main objective of this paper is to investigate the stability of reinforced retaining
walls using the lower- and upper-bound principles in the classical plasticity theory. The
analyses are carried out by the software OptumG2 (Copenhagen, Denmark) [26], which
is based on the methodology in Sloan [27], giving rigorous lower and upper bounds
on the failure load. This is known as numerical limit analysis, which only requires soil
strength parameters that are familiar to geotechnical engineers. In this paper, this method
is used to examine the effects of wall geometry, reinforcement, and seismic parameters
on the failure mechanism and factor of safety of geogrid reinforced retaining walls. As
numerical analysis can account for a wider range of influential parameters, it is a useful
complement to experimental studies (typically limited). The numerical analysis results can
help engineers better understand the mechanism of the problem. The lower and upper
bounds are invaluable in practice, which enable accurate failure loads to be obtained by
error estimates and the adaptive meshing technique.
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2. Numerical Limit Analysis

The classical limit analysis method was proposed by Drucker and Prager [28] and
has been applied in many geotechnical engineering practices. Following previous work in
limit analysis, many studies have been performed to upgrade limit analysis; e.g., Sloan [27]
achieved great progress in regard to the FELA method, which was implemented in other
research studies [29].

2.1. Theory

This paper analyzed the stability of MSE walls with the finite element strength reduc-
tion method, which was originally developed by Sloan and includes the theory of lower
and upper bounds [30,31]. The adopted analysis software is OptumG2 [26], which is related
to 2D modeling.

2.2. Lower-Bound Principle

The lower-bound theory involves an objective function that should be maximized
when the structure is subjected to a collapse load under the equilibrium equality constraints
expressed in Equation (1), the discontinuity equilibrium defined in Equations (2)–(5), and
the yield condition described in Equations (6)–(10).

In the equilibrium state of each element, the constraint must achieve equilibrium in
each element, as expressed in Equations (2)–(5), which is consistent with Equation (1).
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where σ and τ are the stress in soil elements; Ae refers to stress boundary conditions of the
area of the element; ηi and ζi are constants that depend on the nodal co-ordinates; γe is the
soil unit weight.

In the limit analysis method, the element corresponds to an individual node, so under
the condition of stress balance in the region, the normal and shear nodal stresses along the
edge of an element must be equal. The constraints on the different regions at each edge can
be described with Equation (3), where α is expressed with respect to the x-axis.[

Ad
equil

]
{σ} =

{
bd

equil

}
(6)

[
Ad

equil

]
=

[
T −T 0 0
0 0 T −T

]
, T =

[
sin2α cos2α −sin2α

−0.5sin2α 0.5sin2α cos2α

]
(7)

{σ} =
{

σx,1 σy,1 τxy,1 σx,2 σy,2 τxy,2 σx,3 σy,3 τxy,3 σx,4 σy,4 τxy,4
}T (8){

bd
equil

}
=
{

0 0 0 0
}T (9)



Water 2022, 14, 2319 4 of 17

The Mohr-Coulomb strength criterion provides additional yield condition constraints
to ensure that no point stress exceeds the yield value (Sloan, 2013), which is defined as
Equation (3). Function f contains the yield limit formed by all the above stresses.

f (σi) ≤ 0 (10)

2.3. Upper-Bound Principle

The objective function of the upper-bound theory should be minimized when the
internal power dissipation rate decreases, which satisfies the continuum flow rule defined
in Equation (11), the velocities in the discontinuities satisfy the flow rule expressed in
Equation (12), and the stresses in the elements satisfy the yield condition described in
Equation (13).

.
ε

p
xx =

.
λ∂ f /∂σxx

.
ε

p
yy =

.
λ∂ f /∂σyy

.
γ

p
xy =

.
λ∂ f /∂τxy

.
λ ≥ 0,

.
λ f (σe) = 0

(11)

∆un =
.
λ∂ f (σn, τ)/∂σn

∆us =
.
λ∂ f (σn, τ)/∂τ

.
λ ≥ 0,

.
λ f (σn, τ) = 0

(12)

f (σe) ≤ 0 (13)

where
.
λ is the plastic multiplier and f (σe) is the yield condition for each element. A more

detailed introduction to the lower- and upper-bound principles was provided by Lyamin
and Sloan [32]. The subscript in these equations indicates the direction of the stress/strain
in three-dimensional co-ordinates. Subscript n indicates the normal direction.

2.4. Mesh Detail

A comparison of 10,000 and 20,000 adaptive, refined element meshes for this problem
is shown in Figure 1. When the number of grid elements exceeded 10,000, there was
a slight difference between the failure surface diagrams and safety factor values. The
simulation process relied on an adaptive mesh, which could reduce the computational
costs, while a refined mesh could closely capture the failure mechanism. In all cases in this
study, the above lower- and upper-bound principles were applied to analyze the factor
of safety (FS), and 10,000 upper- and lower-bound elements were considered with three
adaptivity iterations.
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3. Verification of the Numerical Model
3.1. Case 3-1

Two model walls in the critical state were analyzed according to the AASHTO design
method with the FLAC model according to EHWA-RD-03-04 [33,34]. The purpose was to
compare OptumG2 predictions to results obtained with an existing limit analysis method.
The following two cases were selected to represent different failure mechanisms identified
with OptumG2, as shown in Figure 2.
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The data input for verification is listed in Table 1, in which the same wall geometry,
rigid block facing, water-free foundation, and reinforcement were considered. Major FLAC
and OptumG2 simulation results are provided in Table 1. Case 3-1 indicated that, according
to FLAC analysis, the wall occurred in the failure state due to overturning failure (FS = 1.09).
The OptumG2 results for Case 3-1 confirmed that under a reinforcement length of l = 1.5 m,
the wall was at the verge of overturning failure (FS = 1.075), which coincided with the FLAC
analysis results regarding the failure mechanism and safety factor. OptumG2 predicted
the same overturning mode of failure and safety factor identified via FLAC calculations.
The safety factor for the reinforcements obtained via FLAC and OptumG2 calculations is
provided in Table 2.

Table 1. Input data for verification of the numerical analysis models.

Input Data Case 3-1 Case 3-2

Wall height 8.2 12.1

Reinforcement spacing (m) 0.4 1.34

Reinforcement length (m) 1.5 7.5

Reinforcement soil unit weight (kN/m3) 22 15.64

Reinforcement soil angle of friction (◦) 45 39.5

Retaining soil unit weight (kN/m3) 22 15.64

Retaining soil angle of friction (◦) 45 39.5

Foundation soil unit weight (kN/m3) 22 15.64

Foundation soil angle of friction (◦) 45 39.5

Ultimate strength of geogrid
reinforcement (kN/m) 9.0 10.0

Soil–geogrid angle of friction (◦) 35 39
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Table 2. Safety factor results for Case 1 with the numerical model.

Safety Factor Lower Bound Upper Bound Average Value FLAC Analysis

Case 3-1 1.039 1.110 1.075 1.09 (1)

3.2. Case 3-2

Another case [35] was selected to represent different failure mechanisms identified
with both OptumG2 (Fs = 1.059) and FLAC (Fs = 1.07), as shown in Figure 3. The data input
is listed in Table 2. The triangle marked in the image is the failure surface in which there is
a slight difference between OptumG2 and FLAC. The failure mechanism results shown in
Figure 3 indicate that the failure modes determined with the two simulation methods were
consistent under the same input parameters (global failure).
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4. Parametric Study and Results

There are two major parts of the research results. The first part of the results includes
the relationship between the identified failure mechanism and influence of the following
parameters: (A) reinforcement parameter, (B) geometry of the wall, and (C) horizontal
seismic load. The second part illustrates the influence of variables on the safety factor. In
the Experimental Discussion section, the obtained conclusion was supported by calculating
the minimum length of the reinforcement zone to maintain the failure mechanisms in each
case. Each wall was simulated but the failure mechanism was altered by increasing the
reinforcement length while maintaining the wall height at 10 m. Three common failure
mechanisms are often considered: overturning failure, sliding failure, and global failure.
In the simulations, the failure mechanism was defined by determining the two critical
reinforcement lengths of sliding failure. The critical reinforcement lengths of sliding failure
were identified as follows: (1) the failure surface was straight, (2) a slip surface was fully
developed through the reinforced wall, and (3) there was a horizontal movement of the
wall, as shown in Figure 4.
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4.1. Numerical Model
4.1.1. Parameter Value Ranges and Baseline Case

A basic model was defined, as shown in Figure 5. The block in front of the reinforce-
ment soil in the base case comprised a stiff material, with a thickness of 500 mm and a
height of 300 mm without a footing underneath the wall. The height of the reinforced wall
is 10 m. In addition, the soil models in this paper, including reinforced and retained soil
models, were all elastic to perfectly plastic models. The ranges considered in this paper
referred to the parameters of most MSE walls in the field [36].
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Some meaningful simulation results of the geogrid (reinforcement) length in the
transformation process between the above three failure mechanisms are shown in this
section. The influence of each parameter in the numerical model was identified by exploring
its impact on the critical value of the geogrid length by varying a single parameter while
the other parameters remained constant.

4.1.2. Geometry and Boundary Conditions

In the present study, the parameter range in the base case encompasses average
values previously reported in the literature. The height and width of the foundation were
20 and 60 m, respectively, which were beyond the standard values to minimize boundary
effects, as shown in Figure 5. The height and width of the wall facing were 12 m and 0.5 m,
respectively. The width of the reinforcement soil zones was 10 m.

The deformation-limiting boundary conditions of the model in this paper are consistent
with those in most numerical analysis experiments in the literature (Jiang et al., 2019). The
bottom was constrained along the normal and tangential directions, and the sides were
constrained only along the normal direction. The influence of groundwater was not
considered in this study.

4.1.3. Soil Constitutive Models and Properties

The soil models in this paper, including reinforced and retained soil models, were all
elastic–perfectly plastic models, as listed in Table 3. The foundation soil and block facing
were simulated with linearly elastic models. In the literature, relevant experiments [37]
with the MC model have been reported in terms of the establishment of a soil model for
MSE wall simulation, which have demonstrated the feasibility of MSE simulation.
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Table 3. Soil parameters in the numerical model.

Material Reinforced Soil Retained Soil Foundation Soil Block Facing

Constitutive mode Mohr-Coulomb Mohr-Coulomb Linearly elastic Linearly elastic

Unit weight (kN/m3) 18 18 18 23

Young’s modulus (MPa) 20 20 2000 -

Poisson’s ratio 0.3 0.3 0.3 -

Cohesion (kPa) 0 0 0 -

Friction angle (◦) 35 35 35 35

Dilation angle (◦) 5 5 5 -

4.1.4. Reinforcement Properties

The type of reinforcement in the numerical simulations was a geogrid, which entailed
a linearly elastic–perfectly plastic model allowing small deformations. The weightless
geogrid cannot sustain uniaxial compression and offers no resistance to bending. The
detailed parameters are listed in Table 4.

Table 4. Modeling of the reinforcement stiffness.

Materials Secant Stiffness at 2%,
J2% (kN/m2) Tensile Strength (kN/m2)

geogrid 400 20

4.1.5. Interface Properties

The numerical model considered two types of interfaces, as listed in Table 5. The shear
stress of the interface surface is directly proportional to the displacement, which reflects
linear elastic to perfectly plastic properties. The reduced strength of the interface in the
numerical calculation was 0.85. The cohesion of the backfill-reinforcement interface was
assumed to reach zero, and the dilation angle was 5◦.

Table 5. Interface parameters.

Interface Friction Angle (◦) Dilation Angle (◦) Cohesion (kPa) Normal Shear Stiffness

Backfill-reinforcement 35 5 0 - -

Block-reinforcement 25 0 0 - -

4.1.6. Critical Reinforcement Lengths

The significant impact of the geogrid length on the failure mechanism is shown in
Figure 6. When the geogrid length was smaller than 4 m, the safety factor rapidly increased
with increasing geogrid length, and the failure mechanism transitioned from overturning
into sliding. However, when the geogrid length was larger than 10 m, the safety factor
slowly increased. This suggests that when the geogrid length reaches the critical length, the
overall materials in the reinforced retaining wall experience antifailure deformation, and
the overall structure fully absorbs the failure energy. The two inflection points in Figure 6
denote the approximate values of the critical length. More details on the failure mechanism
are described, considering the geometric parameters of the MSE wall.

4.2. Wall Height

The geometry of the reinforced retaining wall is a crucial factor influencing the evalu-
ation results of MSE wall design stability. Figure 7 shows that FS significantly increased
with increasing geogrid length and decreased with increasing wall height when the wall
height was varied from 5 to 15 m. In addition, the increase in FS at a wall height of 5 m
changed more obviously than that at a wall height of 15 m.
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Based on the three regions separated by the dotted line in Figure 7, it could be observed
that the three geogrid lengths corresponded to distinct failure mechanisms. Both the
geogrid length and wall height contributed to the observed change in the failure mechanism.
Moreover, when the change in wall height did not exceed 9 m, the failure mechanism was
mainly affected by the length of the geogrid, and an increase in wall height could not alter
the overturning failure mechanism, as shown in Figure 8. Each study case is marked with
black points in Figure 8, and the parameters and failure mechanism are summarized in
Table 6. Three failure mechanisms in cases with geogrid lengths l = 2 m, 10 m, and 15 m
are shown in Figure 9. When the range of reinforced soil is very limited, the soil failure
surface transects the bottom, and the reinforced wall is directly overturned, with which
an increase in the reinforced soil area imposes a significant influence on the safety factor,
as shown in Figure 9a. When the geogrid length was further increased, the slope-sliding
failure mechanism emerged, as shown in Figure 9b. However, when the length of the
geogrid exceeded the critical length, due to its large scale and high strength, the failure
surface did not penetrate the reinforced wall, as shown in Figure 9c. An increase in the
wall height could yield many negative effects, including an increase in the active earth
pressure, a decrease in the factor of safety, and an increase in the critical length, which
could reduce the overall stability of the structure, and wall failure mode variation required
greater reinforcement.
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Table 6. Summary of the failure mechanism cases.
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Parameter in the Numerical Model
Failure Mechanism

Wall Height (m) Reinforcement
Length (m)

Reinforcement
Space (m) K (g)

1 6 2 0.6 0
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Table 6. Cont.
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Table 6. Cont.
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Figure 9. Three failure mechanism cases.

Cases 1 to 6 in Table 6 represent the failure mechanism with the wall height. In
Cases 1 to 3, although the transition state also hardly occurred, it was obvious that the
change in wall height did not greatly influence the transition state of the failure mechanism
similarly to Case 1. In Cases 4 to 6, the numerical results indicated the transition state from
sliding failure to global failure. In these cases, a higher wall resulted in a longer duration of
the transition state.

4.3. Reinforcement Spacing

The influence of the reinforcement spacing on the stability of MSE walls is shown in
Figure 10. Since the AASHTO manual requires that the spacing should be smaller than
0.8 m, the variation range of the spacing considered in the parameter study is 0.3–0.9 m.
The results are shown in Figure 10, in which the change in spacing did not affect the
critical value of global failure occurrence but greatly impacted the overturning failure
mode when the reinforcement vertical spacing was smaller than 0.5 m. In addition, when
the reinforcement spacing exceeded 0.8 m, the failure mode mainly depended on the
reinforcement length. This occurred because the low density of reinforcement reduced the
bearing capacity of the reinforcement zone.
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Figure 10. Effect of the reinforcement spacing on the critical reinforcement length.

A summary of all parametric study results is given in Table 6, in which Cases 7 to
12 represent the failure mechanism as a function of the spacing. In each case, numerical
experiments below the critical reinforcement value were performed. In Cases 7 to 9, if the
reinforcement length was larger than 1 m, the failure mode transitioned into sliding failure,
which reflects the transition state change from overturning failure to sliding failure. In the
cases with a small spacing, the transition state hardly occurred. Due to the large spacing of
the reinforcement zone, the influence of the reinforcement length on the strength decreased.
In Cases 10 to 12, the inclination angle of the sliding failure surface gradually increased.
Because the strength of the reinforcement zone decreased with increasing spacing, the
failure surface more easily penetrated the reinforcement zone. These results in Figure 10
are consistent with the safety factor change trend.
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4.4. Horizontal Seismic Load Originating from Earthquake

Cases with seismic coefficient values of K = gh/gv, with gv = 9.8 m/s2, were considered.
The effect of the seismic load, ranging from 0.05 g to 0.2 g, on the critical reinforcement
length is shown in Figure 11. An increase in seismic coefficient value required a larger
critical length of the reinforcement to satisfy the stability requirements of the sliding and
global failure modes.
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Cases 13 to 16, as listed in Table 6, represent the base case failure mechanism under
seismic loading. An increased seismic coefficient value resulted in a longer transition state
and higher inclination angle of the failure surface.

5. Recommendations for Design

The existing design method involves internal and external stability analysis based
on the limit state method. In this design method, the location of the damaged surface is
often assumed, and assessment calculations are then carried out. This method generally
incorporates experience-based knowledge, and the assumptions before calculation are
often difficult to verify in practical applications. However, this design method does not
consider the relationship between the parameters of MSE walls and failure mode. The
equilibrium conditions of the analysis method proposed in this paper are applicable to the
whole soil area, and the safety factor is defined in a very small range, so that engineers
can meet different design requirements in the seismic design of structures according to the
range. The research results of this paper provide engineers with rich references. Specific
suggestions and contributions are as follows:

(1) Length of the reinforcement. A minimum reinforcement length of 0.7 H is rec-
ommended for MSE walls. In areas with poor foundation conditions and areas of a high
seismic grade, larger lengths are required, as listed in Table 7.

(2) Spacing of the reinforcement. When the spacing of the reinforcement is smaller
than 0.6 m, the position of the sliding surface could occur behind the reinforced area. In the
simulation analysis experiments in this paper, if the overturning failure mode emerged,
the length-to-height ratio of reinforcement varied between 0.23 and 0.4. When the ratio
was higher than 0.9, the global failure mode emerged. However, under normal conditions,
parametric analysis indicated that the wall stability was not only determined by the length-
to-height ratio but also determined by the reinforcement length. When the foundation
conditions were limited, the stability of the wall could be improved by increasing the
reinforcement length and reducing the spacing, as listed in Table 8.

(3) Horizontal seismic load. The seismic load could significantly reduce the wall
stability. Maintaining the wall in the global failure mode required higher wall design
conditions. Under the baseline conditions, the reinforcement length and the length-to-
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height ratio of reinforcement could be increased to improve the wall stability. When the
reinforcement length was limited due to the construction environment, the wall stability
could be improved by decreasing the spacing of the reinforcement.

Table 7. Minimum length of the reinforcement.

Case L/H Length (m)

Base conditions 0.8 12
Seismic loading 0.9 15

Table 8. Maximum spacing of the reinforcement.

Case Spacing (m)

Base conditions 0.7
Seismic loading 0.5

Limited reinforcement length 0.5

6. Conclusions

The critical reinforcement values resulting in MSE wall failure mechanism transition
under the effect of various parameters were studied under different conditions. The
influence of the length of the reinforcement in different cases on the stability of MSE
walls was studied. The research obtained rich and interesting results, provided design
suggestions for engineers, and made contributions to the field of seismic design of retaining
walls. According to this research, the following conclusions can be drawn:

(1) Both the reinforcement length and wall height greatly affected the change in
failure mode of MSE walls, based on the parameter study in this paper. When the wall
height was greater than 9 m, an increase in height could reduce the strengthening effect
of the reinforcement, in which maintaining a favorable failure mode required a longer
reinforcement length.

(2) With the properties involved in this paper, the critical length of the reinforcement
was determined as approximately 0.4-H and 0.9-H, which divided the various failure
modes into overturning failure, sliding failure, and global failure.

(3) The reinforcement spacing was an important factor influencing the failure mode
of MSE walls. Increasing the reinforcement spacing from 0.3 to 0.9 m reduced the safety
factor and altered the failure mode. In particular, when the reinforcement spacing was
above 0.5 m, the critical length of the reinforcement increased from overturning failure to
sliding failure, and when the reinforcement spacing was above 0.8 m, the critical length of
the reinforcement decreased from sliding failure to global failure.

(4) The seismic coefficient obviously affected the stability of MSE walls. The required
reinforcement length to maintain the wall stability in the case with a seismic coefficient
value of 0.2 was almost 1.5 times larger than that in the case without a seismic load.

The assumption in this study is that elastic–perfectly plastic models cannot con-
sider deformation. In stability analysis, there are numerous parameters in the elastic–
plastic constitutive model, and inappropriate parameter selection could cause large errors.
The following research direction will be to integrate the advantages of both models for
parametric analysis.
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