Generate_SWMM_inp: An Open-Source QGIS Plugin to Import and Export Model Input Files for SWMM
Abstract
:1. Introduction
2. Concept and Implementation of a QGIS Plugin as an Interface between GIS and SWMM
3. Application Example
- characterize the subcatchments by geodata in QGIS;
- use these values to set up a model in SWMM to estimate for rainfall events of different intensities:
- (a)
- current discharge volumes;
- (b)
- expected discharge volumes in future scenarios.
3.1. Geodata and Preprocessing in QGIS
3.2. Rainfall Data and Model Setup
3.3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Section in SWMM Input File | File Name in Default Data Set | Layer Geometry | Annotations |
---|---|---|---|
SUBCATCHMENTS | SWMM_subcatchments.gpkg | Polygon | |
SUBAREAS | |||
INFILTRATION | |||
Polygons | Automatically derived from subcatchment geometries | ||
CONDUITS | SWMM_conduits.gpkg | Line | |
LOSSES | |||
PUMPS | SWMM_pumps.gpkg | Line | |
WEIRS | SWMM_weirs.gpkg | Line | |
OUTLETS | SWMM_outlets.gpkg | Line | |
ORIFICES | Line | ||
XSECTIONS | - | - | Automatically derived from CONDUITS, WEIRS and ORIFICES |
VERTICES | - | - | Automatically derived from line geometries |
JUNCTIONS | SWMM_junctions.gpkg | Point | |
STORAGES | SWMM_storages.gpkg | Point | |
OUTFALLS | SWMM_outfalls.gpkg | Point | |
DIVIDERS | SWMM_dividers.gpkg | Point | |
COORDINATES | - | - | Automatically derived from point geometries |
Section in SWMM Input File | File Name in Default Data Set | Table Names in Excel File |
---|---|---|
OPTIONS | gisswmm_options.xlsx | OPTIONS |
CURVES | gisswmm_curves.xlsx | Rating |
Storage | ||
Tidal | ||
Weir | ||
Pump1 | ||
Pump2 | ||
Pump3 | ||
Pump4 | ||
Pump5 | ||
Control | ||
Diversion | ||
Shape | ||
INFLOWS | gisswmm_inflows.xlsx | Direct |
DWF | Dry_Weather | |
PATTERNS | gisswmm_patterns.xlsx | HOURLY |
MONTHLY | ||
DAILY | ||
WEEKEND | ||
POLLUTANTS | gisswmm_quality.xlsx | POLLUTANTS |
LANDUSES | LANDUSES | |
BUILDUP | ||
WASHOFF | ||
COVERAGES | COVERAGES | |
LOADINGS | LOADINGS | |
TIMESERIES | gisswmm_timeseries.xlsx | - |
RAINGAGES | ||
STREETS | gisswmm_streets.xlsx | STREETS |
INLETS | INLETS | |
INLET_USAGE | INLET_USAGE | |
TRANSECTS | gisswmm_transects.xlsx | Data |
XSections |
Appendix B
References
- Rossman, L.A.; Simon, M. Storm Water Management Model User’s Manual Version 5.2; National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 2022. [Google Scholar]
- Rossman, L.A.; Dickinson, R.E.; Schade, T.; Chan, C.C.; Burgess, E.; Sullivan, D.; Lai, F.-H. SWMM 5—The Next Generation of EPA’s Storm Water Management Model. J. Water Manag. Model. 2004, 12, 339–358. [Google Scholar] [CrossRef]
- Simon, M.; Tryby, M. Open Source SWMM: Community—Based Software Development for Storm Water Management Modeling; EPA/600/S-18/129; U.S. Environmental Protection Agency: Washington, DC, USA, 2018. [Google Scholar]
- Niazi, M.; Nietch, C.; Maghrebi, M.; Jackson, N.; Bennett, B.R.; Tryby, M.; Massoudieh, A. Storm Water Management Model: Performance Review and Gap Analysis. J. Sustain. Water Built Environ. 2017, 3, 04017002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Yu, L.; Cui, Y.; Yuan, X. Application of SWMM 5.1 in flood simulation of sponge airport facilities. Water Sci. Technol. 2020, 81, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Lowe, S.A. Sanitary sewer design using EPA storm water management model (SWMM). Comput. Appl. Eng. Educ. 2009, 18, 203–212. [Google Scholar] [CrossRef]
- Burszta-Adamiak, E.; Mrowiec, M. Modelling of green roofs’ hydrologic performance using EPA’s SWMM. Water Sci. Technol. 2013, 68, 36–42. [Google Scholar] [CrossRef]
- Krebs, G.; Kokkonen, T.; Setälä, H.; Koivusalo, H. Parameterization of a Hydrological Model for a Large, Ungauged Urban Catchment. Water 2016, 8, 443. [Google Scholar] [CrossRef]
- Rai, P.K.; Chahar, B.R.; Dhanya, C.T. GIS-based SWMM model for simulating the catchment response to flood events. Hydrol. Res. 2017, 48, 384–394. [Google Scholar] [CrossRef]
- Jang, S.; Cho, M.; Yoon, J.; Yoon, Y.; Kim, S.; Kim, G.; Kim, L.; Aksoy, H. Using SWMM as a tool for hydrologic impact assessment. Desalination 2007, 212, 344–356. [Google Scholar] [CrossRef]
- Kachholz, F.; Tränckner, J. A Model-Based Tool for Assessing the Impact of Land Use Change Scenarios on Flood Risk in Small-Scale River Systems—Part 1: Pre-Processing of Scenario Based Flood Characteristics for the Current State of Land Use. Hydrology 2021, 8, 102. [Google Scholar] [CrossRef]
- Tu, M.-C.; Smith, P. Modeling pollutant buildup and washoff parameters for SWMM based on land use in a semiarid urban watershed. Water Air Soil Pollut. 2018, 229, 121. [Google Scholar] [CrossRef]
- CHI. PCSWMM. Available online: https://www.pcswmm.com/ (accessed on 18 June 2022).
- Innovyze. InfoSWMM. Available online: https://www.innovyze.com/media/2352/key-features-infoswmm.pdf (accessed on 18 June 2022).
- Streamstech. GeoSWMM. Available online: https://streamstech.com/Products/GeoSWMM (accessed on 18 June 2022).
- Lago Consulting. Lago Toolbox. Available online: https://www.lago-consulting.com/lago-toolbox.html (accessed on 18 June 2022).
- Lee, J.G.; Nietch, C.T.; Panguluri, S. Drainage area characterization for evaluating green infrastructure using the Storm Water Management Model. Hydrol. Earth Syst. Sci. 2018, 22, 2615–2635. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, F.; Rubinato, M.; Goerke, M.; Hart, J. Assessing the Performance of LISFLOOD-FP and SWMM for a Small Watershed with Scarce Data Availability. Water 2022, 14, 748. [Google Scholar] [CrossRef]
- Yang, Q.; Dai, Q.; Han, D.; Zhu, X.; Zhang, S. Impact of the Storm Sewer Network Complexity on Flood Simulations According to the Stroke Scaling Method. Water 2018, 10, 645. [Google Scholar] [CrossRef] [Green Version]
- Blumensaat, F.; Wolfram, M.; Krebs, P. Sewer model development under minimum data requirements. Environ. Earth Sci. 2012, 65, 1427–1437. [Google Scholar] [CrossRef]
- R Development Core Team, RFFSC. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011. [Google Scholar]
- Python Software Foundation. Python. Available online: https://www.python.org (accessed on 7 July 2022).
- Leutnant, D.; Döring, A.; Uhl, M. swmmr—An R package to interface SWMM. Urban Water J. 2019, 16, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Pichler, M. Swmm-api, Version 0.2.0.18.3; Institute of Urban Water Management and Landscape Water Engineering, Graz University of Technology: Graz, Austria, 2022.
- McDonnell, B.; Ratliff, K.; Tryby, M.; Wu, J.; Mullapudi, A. PySWMM: The Python Interface to Stormwater Management Model (SWMM). JOSS 2020, 5, 2292. [Google Scholar] [CrossRef]
- Erispaha, A. Swmmio. Available online: https://swmmio.readthedocs.io/en/v0.4.9/ (accessed on 17 July 2022).
- Cera, T. Swmmtoolbox. Available online: https://pypi.org/project/swmmtoolbox/ (accessed on 18 June 2022).
- Riaño-Briceño, G.; Barreiro-Gomez, J.; Ramirez-Jaime, A.; Quijano, N.; Ocampo-Martinez, C. MatSWMM—An open-source toolbox for designing real-time control of urban drainage systems. Environ. Model. Softw. 2016, 83, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Shamsi, U.M.; Smith, P. ArcGIS and SWMM Integration. J. Water Manag. Model. 2005, 13, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Woo, W.; Park, Y.S. A User-Friendly Software Package to Develop Storm Water Management Model (SWMM) Inputs and Suggest Low Impact Development Scenarios. Water 2020, 12, 2344. [Google Scholar] [CrossRef]
- QGIS. A Free and Open Source Geographic Information System. Available online: https://qgis.org/en/site/index.html (accessed on 7 July 2022).
- The QGEP Project. QGEP/TEKSI Wastewater Module Documentation. Available online: https://qgep.github.io/docs/ (accessed on 18 June 2022).
- Giswater. GISWATER User Manual. Available online: https://giswater.gitbook.io/giswater-manual/ (accessed on 18 June 2022).
- Cimpianu, C.I.; Mihu-Pintilie, A. Open Source flood mapping tools—QGIS, RIVER GIS and HEC-RAS. Acta Geobot. 2019, 6, 35–41. [Google Scholar] [CrossRef]
- Tuflow. TUFLOW Plugin for QGIS. Available online: https://www.tuflow.com/products/gis-plugins/ (accessed on 18 June 2022).
- Menapace, A.; Pisaturo, G.R.; de Luca, A.; Gerola, D.; Righetti, M. EPANET in QGIS framework: The QEPANET plugin. J. Water Supply Res. Technol.-Aqua 2020, 69, 1–5. [Google Scholar] [CrossRef]
- Reback, J.; Jbrockmendel; McKinney, W.; van den Bossche, J.; Augspurger, T.; Cloud, P.; Hawkins, S.; Roeschke, M.; gfyoung; Sinhrks; et al. pandas-dev/pandas: Pandas 1.4.1, Zenodo: Genève, Switzerland, 2022.
- QGIS Project. QGIS Python Plugins Repository. Available online: https://plugins.qgis.org/plugins/ (accessed on 7 July 2022).
- QGIS Project. QGIS User Guide. Available online: https://docs.qgis.org/3.22/en/docs/user_manual/ (accessed on 18 June 2022).
- Schilling, J.; Tränckner, J. Estimation of Wastewater Discharges by Means of OpenStreetMap Data. Water 2020, 12, 628. [Google Scholar] [CrossRef] [Green Version]
- Geofabrik GmbH. OpenStreetMap Data Extracts. Available online: https://download.geofabrik.de/ (accessed on 22 April 2022).
- QGIS Project. Exploring Data Formats and Fields. Available online: https://docs.qgis.org/3.22/de/docs/user_manual/managing_data_source/supported_data.html (accessed on 8 July 2022).
Catchment | WE_48 | WE_55 | Var_sep | Base Data in QGIS |
---|---|---|---|---|
Catchment properties | ||||
Total area (ha) | 8.9 | 8.3 | 24.1 | Cadastral data (polygons) |
Number of subcatchments | 85 | 118 | 121 | |
Mean impervious area (%) | 78 | 39 | 32 | Landuse Data, OSM |
Slope (%) (min, max, mean) | 0.9, 16.9, 3.4 | 2.8, 15.0, 5.7 | 3.1, 23.0, 4.6 | DEM |
Sewer system properties | ||||
Number of conduits | 51 | 33 | 176 | Sewer network (lines) |
Total conduit length (m) | 1743 | 1331 | 5525 | |
Longest flow path (m) | 986 | 474 | 1057 | |
Manning roughness of conduits (s/m1/3) | 0.015 | 0.015 | 0.015 | Imported model data |
Number of junctions and outfalls | 52 | 34 | 180 | Sewer network (lines) |
Catchment | WE_48 | WE_55 | Var_sep |
---|---|---|---|
Rainfall event | 15 min_1 y | ||
Total precipitation (mm) | 9.57 | ||
Total discharge volume at outfall (m3) | 514 | 171 | 608 |
Peak inflow (m3/s) | 0.574 | 0.250 | 0.359 |
Rainfall event | 1 h_1 | ||
Total precipitation (mm) | 15.39 | ||
Total discharge volume at outfall (m3) | 889 | 293 | 906 |
Peak inflow (m3/s] | 0.648 | 0.263 | 0.366 |
Rainfall event | 2 h_1 y | ||
Total precipitation (mm) | 18.24 | ||
Total discharge volume at outfall (m3) | 1077 | 354 | 1095 |
Peak inflow (m3/s) | 0.678 | 0.287 | 0.365 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schilling, J.; Tränckner, J. Generate_SWMM_inp: An Open-Source QGIS Plugin to Import and Export Model Input Files for SWMM. Water 2022, 14, 2262. https://doi.org/10.3390/w14142262
Schilling J, Tränckner J. Generate_SWMM_inp: An Open-Source QGIS Plugin to Import and Export Model Input Files for SWMM. Water. 2022; 14(14):2262. https://doi.org/10.3390/w14142262
Chicago/Turabian StyleSchilling, Jannik, and Jens Tränckner. 2022. "Generate_SWMM_inp: An Open-Source QGIS Plugin to Import and Export Model Input Files for SWMM" Water 14, no. 14: 2262. https://doi.org/10.3390/w14142262
APA StyleSchilling, J., & Tränckner, J. (2022). Generate_SWMM_inp: An Open-Source QGIS Plugin to Import and Export Model Input Files for SWMM. Water, 14(14), 2262. https://doi.org/10.3390/w14142262