Trends and Climate Elasticity of Streamflow in South-Eastern Brazil Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Rainfall Data
2.2.2. Streamflow Data
2.2.3. Potential Evapotranspiration Data
2.3. Data Analysis
2.3.1. Time-Series Analysis
2.3.2. Trend Analysis
2.3.3. Break Point (Homogeneity) Analysis
2.3.4. Elasticity Methods
3. Results
3.1. Time-Series and Trend Analysis of Hydroclimate Variables
3.2. Elasticity Results
4. Discussion
4.1. Trends in Climate Variables
4.2. Elasticity of Streamflow
5. Uncertainty and the Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Emborcação | Três Marias | Mascarenhas | Furnas | Cantareira | ||
---|---|---|---|---|---|---|
Area [km2] | 29,057 | 51,044 | 71,573 | 51,687 | 2280 | |
Census 2010 | Population | 444,279 | 2,776,565 | 2,906,492 | 2,467,657 | 204,815 |
PIB | 9,284,611 | 57,824,702 | 33,261,946 | 29,283,999 | 3,920,477 | |
Climate | Aw: 99% | Aw: 64% | Aw: 59% | Cwa:77% | Cwb: 54% | |
Solo [% of area] | Oxisols | 43 | 36 | 60 | 55 | 71 |
Inceptisols | 39 | 44 | 3 | 34 | 0 | |
Ultisols | 8 | 17 | 35 | 8 | 29 | |
Entisols | 5 | 0 | 2 | 0 | 0 | |
Water | 1 | 3 | 0 | 3 | 0 | |
Others | 4 | 0 | 0 | 0 | 0 | |
Land-use type [% of area] | Pasture | 43 | 41 | 34 | 37 | 4 |
Livestock and agriculture | 19 | 25 | 28 | 32 | 15 | |
Forest | 6 | 13 | 24 | 8 | 33 | |
Crop | 16 | 3 | 4 | 8 | 0 | |
Urban | 1 | 3 | 2 | 3 | 44 | |
Others | 15 | 15 | 8 | 12 | 4 |
Appendix B
References
- Wu, J.; Wang, Z.; Dong, Z.; Tang, Q.; Lv, X.; Dong, G. Analysis of natural streamflow variation and its influential factors on the yellow river from 1957 to 2010. Water 2018, 10, 1155. [Google Scholar] [CrossRef][Green Version]
- Kibria, K.N.; Ahiablame, L.; Hay, C.; Djira, G. Streamflow trends and responses to climate variability and land cover change in South Dakota. Hydrology 2016, 3, 2. [Google Scholar] [CrossRef][Green Version]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Sun, T.; Ferreira, V.G.; He, X.; Andam-Akorful, S.A. Water Availability of São Francisco River Basin Based on a Space-Borne Geodetic Sensor. Water 2016, 8, 213. [Google Scholar] [CrossRef]
- Li, E.; Mu, X.; Zhao, G.; Gao, P.; Shao, H. Variation of runoff and precipitation in the hekou-longmen region of the yellow river based on elasticity analysis. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.B.; Franchito, S.H.; Santo, C.M.E.; Gan, M.A. An update on the rainfall characteristics of Brazil: Seasonal variations and trends in 1979–2011. Int. J. Climatol. 2016, 36, 291–302. [Google Scholar] [CrossRef]
- Dobrovolski, R.; Rattis, L. Water collapse in Brazil: The danger of relying on what you neglect. Nat. Conserv. 2015, 13, 80–83. [Google Scholar] [CrossRef][Green Version]
- Rodrigues, R.R.; Taschetto, A.S.; Sen Gupta, A.; Foltz, G.R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [Google Scholar] [CrossRef]
- Wei, X.; Liu, W.; Zhou, P. Quantifying the relative contributions of forest change and climatic variability to hydrology in large watersheds: A critical review of research methods. Water 2013, 5, 728–746. [Google Scholar] [CrossRef]
- Wilson, D.; Hisdal, H.; Lawrence, D. Has streamflow changed in the Nordic countries?—Recent trends and comparisons to hydrological projections. J. Hydrol. 2010, 394, 334–346. [Google Scholar] [CrossRef]
- Schaake, J.C. From climate to flow. Clim. Chang. US Water Resour. 1990, 5, 177–206. [Google Scholar]
- Zhang, Y.; Viglione, A.; Blöschl, G. Temporal Scaling of Streamflow Elasticity to Precipitation: A Global Analysis. Water Resour. Res. 2022, 58, e2021WR030601. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States. Water Resour. Res. 2001, 37, 1771–1781. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Potter, N.J.; Vaze, J.; Petheram, C.; Zhang, L.; Teng, J.; Post, D.A. Observed hydrologic non-stationarity in far south-eastern Australia: Implications for modelling and prediction. Stoch. Environ. Res. Risk Assess. 2014, 28, 3–15. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.; Ju, W.; Song, J.; Zhang, H.; Sun, J.; Fang, Y. Effects of climate change on annual streamflow using climate elasticity in Poyang Lake Basin, China. Theor. Appl. Climatol. 2013, 112, 169–183. [Google Scholar] [CrossRef]
- Kim, B.S.; Hong, S.J.; Lee, H.D. The potential effects of climate change on streamfow in rivers basin of korea using rainfall elasticity. Environ. Eng. Res. 2013, 18, 9–20. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Peel, M.C.; McMahon, T.A.; Siriwardena, L.W. Precipitation elasticity of streamflow in catchments across the world. In Climate Variability and Change—Hydrological Impacts; Demuth, S., Gustard, A., Planos, E., Scatena, F., Servat, E., Eds.; IAHS Press: Wallingford, UK, 2006; pp. 256–262. [Google Scholar]
- Mohor, G.S.; Rodriguez, D.A.; Tomasella, J.; Siqueira Júnior, J.L. Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. J. Hydrol. Reg. Stud. 2015, 4, 41–59. [Google Scholar] [CrossRef][Green Version]
- Andréassian, V.; Coron, L.; Lerat, J.; Le Moine, N. Climate elasticity of streamflow revisited—An elasticity index based on long-term hydrometeorological records. Hydrol. Earth Syst. Sci. 2016, 20, 4503–4524. [Google Scholar] [CrossRef][Green Version]
- Seymenov, K. Climate Elasticity of Annual Streamflow in Northwest Bulgaria. In Smart Geography; Springer: Berlin, Germany, 2020; pp. 105–115. [Google Scholar] [CrossRef]
- Chiew, F.H.S. Estimation of rainfall elasticity of streamflow in Australia. Hydrol. Sci. J. 2006, 51, 613–625. [Google Scholar] [CrossRef]
- Liu, N.; Harper, R.J.; Smettem, K.R.J.; Dell, B.; Liu, S. Responses of streamflow to vegetation and climate change in southwestern Australia. J. Hydrol. 2019, 572, 761–770. [Google Scholar] [CrossRef]
- Ribeiro Neto, A.; da Paz, A.R.; Marengo, J.A.; Chou, S.C. Hydrological Processes and Climate Change in Hydrographic Regions of Brazil. J. Water Resour. Prot. 2016, 8, 1103–1127. [Google Scholar] [CrossRef][Green Version]
- Potter, N.J.; Petheram, C.; Zhang, L. Sensitivity of streamflow to rainfall and temperature in south-eastern Australia during the Millennium drought. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 3636–3642. [Google Scholar]
- Hu, S.; Liu, C.; Zheng, H.; Wang, Z.; Yu, J. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. J. Geogr. Sci. 2012, 22, 895–905. [Google Scholar] [CrossRef]
- Gong, X.; Xu, A.; Du, S.; Zhou, Y. Spatiotemporal variations in the elasticity of runoff to climate change and catchment characteristics with multi-timescales across the contiguous United States. J. Water Clim. Chang. 2022, 13, 1408–1424. [Google Scholar] [CrossRef]
- Geirinhas, J.L.; Trigo, R.M.; Libonati, R.; Coelho, C.A.S.; Palmeira, A.C. Climatic and synoptic characterization of heat waves in Brazil. Int. J. Climatol. 2018, 38, 1760–1776. [Google Scholar] [CrossRef]
- Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; Garcia, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef][Green Version]
- Coelho, C.A.S.; Cardoso, D.H.F.; Firpo, M.A.F. Precipitation diagnostics of an exceptionally dry event in São Paulo, Brazil. Theor. Appl. Climatol. 2016, 125, 769–784. [Google Scholar] [CrossRef]
- Nobre, C.A.; Marengo, J.A.; Seluchi, M.E.; Cuartas, A.; Alves, L.M. Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015 Some Characteristics and Impacts of the Drought and Water Crisis in Southeastern Brazil during 2014 and 2015. J. Water Resour. Prot. 2016, 8, 252–262. [Google Scholar] [CrossRef][Green Version]
- Magrin, G.O.; Marengo, J.A.; Boulanger, J.-P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.; Vicuña, S. Central and South America. In IPCC. Intergovernmental Panel on Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- dos Ramires, J.Z.S.; de Mello-Théry, N.A. Uso e ocupação do solo em São Paulo, alterações climáticas e os riscos ambientais contemporâneos. Rev. Fr. Géographie Rev. Fr. Geogr. 2018, 34, 1–19. [Google Scholar] [CrossRef]
- Otto, F.E.L.; Coelho, C.A.S.; King, A.; de Perez, E.C.; Wada, Y.; van Oldenborgh, G.J.; Haarsma, R.; Haustein, K.; Uhe, P.; van Aalst, M.; et al. Factors Other Than Climate Change, Main Drivers of 2014/15 Water Shortage in Southeast Brazil. In Explaining Extreme Events of 2014 from a Climate Perspective; Herring, S.C., Hoerling, M.P., Kossin, J.P., Peterson, T.C., Stott, P.A., Eds.; Bulletin of the American Meteorological Society; AMS Publications: Providence, RI, USA, 2015; Volume 96. [Google Scholar]
- de Cavalcanti, I.F.A.; Kousky, V.E. Drought in Brazil during summer and fall 2001 and associated atmospheric features. Rev. Climanálise 2002, 1, 1–10. [Google Scholar]
- Whately, M.; Cunha, P. Resultados do Diagnóstico Socioambiental Participativo do Sistema Cantareira. In Cantareira 2006: Um Olhar Sobre O Maior Manancial De Água Da Região Metropolitana De São Paulo; Instituto Socioambiental: São Paulo, Brazil, 2006; ISBN 1120981611. [Google Scholar]
- Brazilian Institute of Geography and Statistics (IBGE). Estimativas da PopulaçãO dos Municípios Brasileiros com Data de Referência em 1° de Julho de 2014; IBGE: Rio de Janeiro, Brazil, 2014; 8p, ISBN 2409774500. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=297745 (accessed on 14 April 2022).
- Brazilian Institute of Geography and Statistics (IBGE). Contas Regionais do Brasil: 2010–2013; IBGE: Rio de Janeiro, Brazil, 2015; 93p, ISBN 9788524043680. Available online: https://ftp.ibge.gov.br/Contas_Regionais/2013/xls/indice_tabelas_xls.html (accessed on 14 April 2022).
- Brazilian Electric System Operator (ONS). Energia Agora Reservatórios. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=294952 (accessed on 14 April 2022).
- de Freitas, C.M.; Barcellos, C.; Asmus, C.I.R.F.; da Silva, M.A.; Xavier, D.R. Da Samarco em Mariana à Vale em Brumadinho: Desastres em barragens de mineração e Saúde Coletiva. Cad. Saude Publica 2019, 35, e00052519. [Google Scholar] [CrossRef][Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef][Green Version]
- Terrier, M.; Perrin, C.; de Lavenne, A.; Andréassian, V.; Lerat, J.; Vaze, J. Streamflow naturalization methods: A review. Hydrol. Sci. J. 2021, 66, 12–36. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Allen, R.G. History and Evaluation of Hargreaves Evapotranspiration Equation. J. Irrig. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Bartolomeu, F.T.; Joao, F.E. Reference evapotranspiration in So Paulo State: Empirical methods and machine learning techniques. Int. J. Water Resour. Environ. Eng. 2018, 10, 33–44. [Google Scholar] [CrossRef][Green Version]
- Oliveira, E.R.; Silva, T.C.; de Oliveira Ramos, R.F. Evapotranspiração de referência em Januária-MG pelos métodos tanque classe “A” e Hargreaves-Samani. Colloq. Agrar. 2020, 16, 48–54. [Google Scholar] [CrossRef]
- Fernandes, A.L.T.; Mengual, R.E.C.G.; de Melo, G.L.; de Assis, L.C. Estimation of reference evapotranspiration for coffee irrigation management in a producuttve region of menas gerais cerrado. Coffee Sci. 2018, 13, 426–438. [Google Scholar] [CrossRef][Green Version]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Salviano, M.F.; Groppo, J.D.; Pellegrino, G.Q. Trends analysis of precipitation and temperature data in Brazil. Rev. Bras. Meteorol. 2016, 31, 64–73. [Google Scholar] [CrossRef][Green Version]
- Pieri, L.; Rondini, D.; Ventura, F. Changes in the rainfall–streamflow regimes related to climate change in a small catchment in Northern Italy. Theor. Appl. Climatol. 2016, 129, 1–13. [Google Scholar] [CrossRef]
- Mu, X.; Wang, H.; Zhao, Y.; Liu, H.; He, G.; Li, J. Streamflow into Beijing and its response to climate change and human activities over the period 1956–2016. Water 2020, 12, 622. [Google Scholar] [CrossRef][Green Version]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kumar, R.; Rani, A.; Singh, S.P.; Maharaj, K.; Srivastava, S.S. A long term study on chemical composition of rainwater at Dayalbagh, a suburban site of semiarid region. J. Atmos. Chem. 2002, 41, 265–279. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kam, J.; Thurner, K. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol. 2009, 374, 171–183. [Google Scholar] [CrossRef]
- Kamal, N.; Pachauri, S. Mann-Kendall Test—A Novel Approach for Statistical Trend Analysis. Int. J. Comput. Trends Technol. 2018, 63, 18–21. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrol. Sci. J. 2016, 61, 245–254. [Google Scholar] [CrossRef][Green Version]
- Ahn, K.-H.; Palmer, R.N. Trend and Variability in Observed Hydrological Extremes in the United States. J. Hydrol. Eng. 2016, 21, 4015061. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-parametric to the Approach Problem. J. R. Stat. Soc. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Hayes, A. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, 2nd ed.; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Cuartas, L.A.; Paula, A.; Cunha, A.; Anast, J.; Milena, L.; Parra, P.; Deusdar, K.; Cristina, L.; Costa, O.; Molina, R.D.; et al. Recent Hydrological Droughts in Brazil and Their Impact on Hydropower Generation. Water 2022, 14, 601. [Google Scholar] [CrossRef]
- de Freitas, G.N. São Paulo drought: Trends in streamflow and their relationship to climate and human-induced change in Cantareira watershed, Southeast Brazil. Hydrol. Res. 2020, 51, 750–767. [Google Scholar] [CrossRef]
- De Souza, E.B.; Manzi, A.O. Mudanças Ambientais de Curto e Longo prazo: Projeções, Reversibilidade e Atribuição. In Base Científica Das Mudanças Climáticas. Primeiro Relatório De Avaliação Nacional; Painel Brasileiro de Mudanças Climáticas—PBMC.COPPE; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brasil, 2014; Volume 1, p. 30. ISBN 9788528502077. [Google Scholar]
- Marengo, J.A.; Valverde, M.C.; Obregon, G.O. Observed and projected changes in rainfall extremes in the Metropolitan Area of São Paulo. Clim. Res. 2013, 57, 61–72. [Google Scholar] [CrossRef][Green Version]
- Christian, J.I.; Basara, J.B.; Hunt, E.D.; Otkin, J.A.; Furtado, J.C.; Mishra, V.; Xiao, X.; Randall, R.M. Global distribution, trends, and drivers of flash drought occurrence. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
Basin | Annual P (mm) | Annual PET (mm) | Annual Q (mm) | Runoff Index (Q/P) | Aridity Index (PET/P) |
---|---|---|---|---|---|
Furnas | 1471 | 1533 | 544 | 0.37 | 1.04 |
Emborcação | 1482 | 1618 | 497 | 0.34 | 1.09 |
Mascarenhas | 1233 | 1535 | 384 | 0.31 | 1.25 |
Três Marias | 1392 | 1610 | 405 | 0.29 | 1.16 |
Cantareira | 1562 | 1424 | 579 | 0.37 | 0.91 |
Runoff | Rainfall | PET | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Z-Value | (p-Value) | BP | Z-Value | (p-Value) | BP | Z-Value | (p-Value) | BP | ||
Annual | FUR | −0.223 | (0.026) * | 1997 | −0.082 | (0.419) | - | 0.559 | (<0.0001) * | 1993 |
EMB | −0.245 | (0.015) * | - | −0.057 | (0.576) | - | 0.535 | (<0.0001) * | 1993 | |
MAS | −0.202 | (0.044) * | - | −0.142 | (0.158) | - | 0.135 | (0.180) | - | |
TM | −0.161 | (0.108) | - | −0.094 | (0.351) | - | 0.441 | (<0.0001) * | 1993 | |
CAN | −0.271 | (0.007) * | 1999 | −0.223 | (0.026) * | - | 0.326 | (<0.0001) * | 1993 | |
5-Year | FUR | −0.271 | (0.010) * | 1995 | −0.129 | (0.221) | - | 0.581 | (<0.0001) * | 1993 |
EMB | −0.239 | (0.023) * | 1995 | −0.111 | (0.9114) | 1995 | 0.683 | (<0.0001) * | 1993 | |
MAS | −0.298 | (0.004) * | 1995 | −0.182 | (0.084) | 1986 | 0.266 | (0.011) * | - | |
TM | −0.154 | (0.142) | - | −0.078 | (0.460) | - | 0.648 | (<0.0001) * | 1994 | |
CAN | −0.469 | (<0.0001) * | 1998 | −0.482 | (<0.0001) * | 1991 | 0.427 | (<0.0001) * | 1994 | |
10-Year | FUR | −0.522 | (<0.0001) * | 1995 | −0.266 | (0.018) * | 1988 | 0.676 | (<0.0001) * | 1992 |
EMB | −0.455 | (<0.0001) * | 1990 | −0.085 | (0.453) | 1986 | 0.776 | (<0.0001) * | 1992 | |
MAS | −0.601 | (<0.0001) * | 1995 | −0.323 | (0.004) * | 1986 | 0.387 | (0.001) * | 1982 | |
TM | −0.379 | (0.001) * | 1989 | −0.333 | (0.003) * | 1987 | 0.811 | (<0.0001) * | 1994 | |
CAN | −0.646 | (<0.0001) * | 1994 | −0.576 | (<0.0001) * | 1992 | 0.582 | (<0.0001) * | 1992 | |
20-Year | FUR | −0.66 | (<0.0001) * | 1992 | −0.507 | (0.000) * | 1992 | 0.975 | (<0.0001) * | 1992 |
EMB | −0.621 | (<0.0001) * | 1991 | −0.305 | (0.021) * | 1988 | 0.961 | (<0.0001) * | 1992 | |
MAS | −0.714 | (<0.0001) * | 1992 | −0.468 | (0.000) * | 1989 | 0.424 | (0.001) * | 1988 | |
TM | −0.567 | (<0.0001) * | 1992 | −0.443 | (0.001) * | 1991 | 0.921 | (<0.0001) * | 1992 | |
CAN | −0.837 | (<0.0001) * | 1992 | −0.882 | (<0.0001) * | 1992 | 0.862 | (<0.0001) * | 1992 |
Pre BP | Pos BP | ∆ | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | Period | Mean | Period | ||||
CAN | Q | 660 | (1970–1992) | 542 | (1993–2017) | −18% | <0.0001 |
P | 1654 | (1970–1992) | 1490 | (1993–2017) | −10% | <0.0001 | |
PET | 1384 | (1970–1992) | 1459 | (1993–2017) | 5% | <0.0001 | |
FUR | Q | 622 | (1970–1992) | 518 | (1993–2017) | −17% | <0.0001 |
P | 1534 | (1970–1992) | 1457 | (1993–2017) | −5% | <0.0001 | |
PET | 1498 | (1970–1992) | 1563 | (1993–2017) | 4% | <0.0001 | |
EMB | Q | 555 | (1970–1991) | 476 | (1992–2017) | −14% | <0.0001 |
P | 1518 | (1970–1988) | 1464 | (1989–2017) | −4% | <0.0001 | |
PET | 1591 | (1970–1992) | 1634 | (1993–2017) | 3% | <0.0001 | |
MAS | Q | 446 | (1970–1992) | 369 | (1993–2017) | −17% | <0.0001 |
P | 1272 | (1970–1989) | 1231 | (1990–2017) | −3% | 0.012 | |
PET | 1529 | (1970–1988) | 1535 | (1989–2017) | 0.4% | <0.0001 | |
TM | Q | 460 | (1970–1992) | 395 | (1993–2017) | −14% | <0.0001 |
P | 1448 | (1970–1991) | 1402 | (1992–2017) | −3% | <0.0001 | |
PET | 1588 | (1970–1992) | 1623 | (1993–2017) | 2% | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deusdará-Leal, K.; Mohor, G.S.; Cuartas, L.A.; Seluchi, M.E.; Marengo, J.A.; Zhang, R.; Broedel, E.; Amore, D.d.J.; Alvalá, R.C.S.; Cunha, A.P.M.A.; et al. Trends and Climate Elasticity of Streamflow in South-Eastern Brazil Basins. Water 2022, 14, 2245. https://doi.org/10.3390/w14142245
Deusdará-Leal K, Mohor GS, Cuartas LA, Seluchi ME, Marengo JA, Zhang R, Broedel E, Amore DdJ, Alvalá RCS, Cunha APMA, et al. Trends and Climate Elasticity of Streamflow in South-Eastern Brazil Basins. Water. 2022; 14(14):2245. https://doi.org/10.3390/w14142245
Chicago/Turabian StyleDeusdará-Leal, Karinne, Guilherme Samprogna Mohor, Luz Adriana Cuartas, Marcelo E. Seluchi, Jose A. Marengo, Rong Zhang, Elisangela Broedel, Diogo de Jesus Amore, Regina C. S. Alvalá, Ana Paula M. A. Cunha, and et al. 2022. "Trends and Climate Elasticity of Streamflow in South-Eastern Brazil Basins" Water 14, no. 14: 2245. https://doi.org/10.3390/w14142245