Cephalexin Adsorption by Acidic Pretreated Jackfruit Adsorbent: A Deep Learning Prediction Model Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Adsorbent
2.2. Characteristics of APJPA
2.3. Optimization of CFX Removal by APJPA
2.4. Artificial Neural Network (ANN) Analysis and Deep Learning Simulations
3. Results and Discussion
3.1. Characterization of Pre-Treated Jackfruit before and after the CFX Adsorption Process
3.2. Optimization and Deep Learning Study
+ 0.145𝑥1𝑥4 − 0.086𝑥2𝑥3 + 0.427𝑥2𝑥4 + 0.008𝑥3𝑥4 − 1.17𝑥12 − 0.155𝑥22
0.032 × 32 + 0.078𝑥42
3.3. Sensitivity of CFX for Environmental Factors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basheer, A.A. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality 2018, 30, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Basheer, A.A.; Ali, I. Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 2018, 30, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Basheer, A.A. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 2018, 261, 583–593. [Google Scholar] [CrossRef]
- Ali, I.; Jain, C.K. Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr. Sci. 1998, 75, 1011–1014. [Google Scholar]
- Ali, I.; Burakov, A.E.; Melezhik, A.V.; Babkin, A.V.; Burakova, I.V.; Neskomornaya, E.A.; Galunin, E.V.; Tkachev, A.G.; Kuznetsov, D.V. 2019. Kinetics, thermodynamics and mechanism of copper and zinc metal ions removal in water on newly synthesized polyhydroquinone/graphene nanocomposite material. ChemSelect 2019, 4, 12708–12718. [Google Scholar]
- Das, N.; Madhavan, J.; Selvi, A.; Das, D. An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech 2019, 9, 231. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231. [Google Scholar] [CrossRef]
- Sabri, N.A.; van Holst, S.; Schmitt, H.; van der Zaan, B.M.; Gerritsen, H.W.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Fate of antibiotics and antibiotic resistance genes during conventional and additional treatment technologies in wastewater treatment plants. Sci. Total Environ. 2020, 741, 140199. [Google Scholar] [CrossRef]
- Liu, W.; Xie, H.; Zhang, J.; Zhang, C. Sorption removal of cephalexin by HNO3 and H2O2 oxidized activated carbons. Sci. China Chem. 2012, 55, 1959–1967. [Google Scholar] [CrossRef]
- Wang, T.; Pan, X.; Ben, W.; Wang, J.; Hou, P.; Qiang, Z. Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J. Environ. Sci. 2017, 52, 111–117. [Google Scholar] [CrossRef]
- Saleem, J.; Shahid, U.B.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefinery 2019, 9, 775–802. [Google Scholar] [CrossRef] [Green Version]
- Blachnio, M.; Derylo-Marczewska, A.; Charmas, B.; Zienkiewicz-Strzalka, M.; Bogatyrov, V.; Galaburda, M. Activated carbon from agricultural wastes for adsorption of organic pollutants. Molecules 2020, 25, 5105. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- El-Hendawy, A.N.A. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 2003, 41, 713–722. [Google Scholar] [CrossRef]
- Noman, E.A.; Al-Gheethi, A.; Mohamed, R.M.S.R.; Talip, B.A.; Hossain, M.S.; Altowayti, W.A.H.; Ismail, N. Sustainable approaches for removal of cephalexin antibiotic from non-clinical environments: A critical review. J. Hazard. Mater. 2021, 417, 126040. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Yue, Q.; Gao, B.; Sun, Y.; Wang, Y.; Li, Q.; Zhao, P.; Chen, S. Physicochemical and adsorptive properties of activated carbons from Arundo donax Linn utilizing different iron salts as activating agents. J. Taiwan Inst. Chem. Eng. 2014, 45, 3007–3015. [Google Scholar] [CrossRef]
- Khanday, W.A.; Ahmed, M.J.; Okoye, P.U.; Hummadi, E.H.; Hameed, B.H. Single-step pyrolysis of phosphoric acid-activated chitin for efficient adsorption of cephalexin antibiotic. Bioresour. Technol. 2019, 280, 255–259. [Google Scholar] [CrossRef]
- Rashtbari, Y.; Hazrati, S.; Afshin, S.; Fazlzadeh, M.; Vosoughi, M. Data on cephalexin removal using powdered activated carbon (PPAC) derived from pomegranate peel. Data Brief 2018, 20, 1434–1439. [Google Scholar] [CrossRef]
- Al-Gheethi, A.; Noman, E.; Mohamed, R.M.S.R.; Talip, B.; Vo, D.V.N.; Algaifi, H.A. Cephalexin removal by a novel Cu–Zn bionanocomposite biosynthesized in secondary metabolic products of Aspergillus arenarioides EAN603 with pumpkin peels medium: Optimization, kinetic and artificial neural network models. J. Hazard. Mater. 2021, 419, 126500. [Google Scholar] [CrossRef]
- Arab, M.; Faramarz, M.G.; Hashim, K. Applications of computational and statistical models for optimizing the electrochemical removal of cephalexin antibiotic from water. Water 2022, 14, 344. [Google Scholar] [CrossRef]
- Ahmadi, S.; Ghosh, S.; Malloum, A.; Bornman, C.; Osagie, C.; Mohammadi, L.; Igwegbe, C.A. Modeling the Liquid-Phase Adsorption of Cephalexin onto Coated Iron Nanoparticles Using Response Surface and Molecular Modeling. Adsorpt. Sci. Technol. 2022, 2022, 7619063. [Google Scholar] [CrossRef]
- Wernke, G.; Shimabuku-Biadola, Q.L.; Dos Santos, T.R.T.; Silva, M.F.; Fagundes-Klen, M.R.; Bergamasco, R. Adsorption of cephalexin in aqueous media by graphene oxide: Kinetics, isotherm, and thermodynamics. Environ. Sci. Pollut. Res. 2022, 27, 4725–4736. [Google Scholar] [CrossRef] [PubMed]
- Alhasan, H.S.; Alahmadi, N.; Yasin, S.A.; Khalaf, M.Y.; Ali, G.A. Low-cost and eco-friendly hydroxyapatite nanoparticles derived from eggshell waste for cephalexin removal. Separations 2022, 9, 10. [Google Scholar] [CrossRef]
- Lee, C.L.; H’ng, P.S.; Paridah, M.T.; Chin, K.L.; Rashid, U.; Maminski, M.; Go, W.Z.; Nazrin, R.A.R.; Rosli, S.N.A.; Khoo, P.S. Production of bioadsorbent from phosphoric acid pretreated palm kernel shell and coconut shell by two-stage continuous physical activation via N2 and air. R. Soc. Open Sci. 2018, 5, 180775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isa, E.D.M.; Shameli, K.; Ch’ng, H.J.; Jusoh, N.W.C.; Hazan, R. Photocatalytic degradation of selected pharmaceuticals using green fabricated zinc oxide nanoparticles. Adv. Powder Technol. 2021, 32, 2398–2409. [Google Scholar]
- Acelas, N.; Lopera, S.M.; Porras, J.; Torres-Palma, R.A. Evaluating the removal of the antibiotic cephalexin from aqueous solutions using an adsorbent obtained from palm oil fiber. Molecules 2021, 26, 3340. [Google Scholar] [CrossRef] [PubMed]
- Panahi, A.H.; Ashrafi, S.D.; Kamani, H.; Khodadadi, M.; Lima, E.C.; Mostafapour, F.K.; Mahvi, A.H. Removal of cephalexin from artificial wastewater by mesoporous silica materials using Box-Behnken response surface methodology. Desalin. Water Treat. 2019, 159, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Shahmansouri, A.A.; Bengar, H.A.; Jahani, E. Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm. Constr. Build. Mater. 2019, 229, 116883. [Google Scholar] [CrossRef]
- Nazari, G.; Abolghasemi, H.; Esmaieli, M.; Pouya, E.S. Aqueous phase adsorption of cephalexin by walnut shell-based activated carbon: A fixed-bed column study. Appl. Surf. Sci. 2016, 375, 144–153. [Google Scholar] [CrossRef]
- Shirani, Z.; Song, H.; Bhatnagar, A. Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar. Sci. Total Environ. 2020, 745, 140789. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations. Chem. Eng. J. 2012, 211, 200–207. [Google Scholar] [CrossRef]
- Kan, Y.; Yue, Q.; Liu, S.; Gao, B. Effects of Cu and CuO on the preparation of activated carbon from waste circuit boards by H3PO4 activation. Chem. Eng. J. 2018, 331, 93–101. [Google Scholar] [CrossRef]
- Miao, M.S.; Liu, Q.; Shu, L.; Wang, Z.; Liu, Y.Z.; Kong, Q. Removal of cephalexin from effluent by activated carbon prepared from alligator weed: Kinetics, isotherms, and thermodynamic analyses. Process Saf. Environ. Prot. 2016, 104, 481–489. [Google Scholar] [CrossRef]
- Yu, J.; Kang, Y.; Yin, W.; Fan, J.; Guo, Z. Removal of antibiotics from aqueous solutions by a carbon adsorbent derived from protein-waste-doped biomass. ACS Omega 2020, 5, 19187–19193. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W.; Zhang, J.; Zhang, C.; Ren, L.; Li, Y. Removal of cephalexin from aqueous solutions by original and Cu (II)/Fe (III) impregnated activated carbons developed from lotus stalks kinetics and equilibrium studies. J. Hazard. Mater. 2011, 185, 1528–1535. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Sadegh, N. Effective removal of amoxicillin, cephalexin, tetracycline and penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng. 2014, 1, 64–73. [Google Scholar] [CrossRef]
- Mohseni-Bandpi, A.; Al-Musawi, T.J.; Ghahramani, E.; Zarrabi, M.; Mohebi, S.; Vahed, S.A. Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J. Mol. Liq. 2016, 218, 615–624. [Google Scholar] [CrossRef]
- Rashtbari, Y.; Hazrati, S.; Azari, A.; Afshin, S.; Fazlzadeh, M.; Vosoughi, M. A novel, eco-friendly and green synthesis of PPAC-ZnO and PPAC-nZVI nanocomposite using pomegranate peel: Cephalexin adsorption experiments, mechanisms, isotherms and kinetics. Adv. Powder Technol. 2020, 31, 1612–1623. [Google Scholar] [CrossRef]
Run | x1 | x2 | x3 | x4 | Removal | |
---|---|---|---|---|---|---|
Actual | Predicted | |||||
1 | 40.00 | 10.00 | 10.00 | 4.00 | 44.52 | 33.18 |
2 | −0.23 | 6.50 | 35.00 | 6.50 | 0.00 | −0.96 |
3 | 25.00 | 12.39 | 35.00 | 6.50 | 87.88 | 86.92 |
4 | 10.00 | 3.00 | 10.00 | 4.00 | 67.51 | 56.18 |
5 | 40.00 | 10.00 | 60.00 | 4.00 | 55.79 | 68.49 |
6 | 25.00 | 6.50 | 35.00 | 6.50 | 92.54 | 96.08 |
7 | 25.00 | 6.50 | 35.00 | 6.50 | 95.75 | 96.08 |
8 | 10.00 | 10.00 | 60.00 | 9.00 | 28.55 | 41.25 |
9 | 10.00 | 10.00 | 10.00 | 9.00 | 51.74 | 40.41 |
10 | 25.00 | 6.50 | −7.04 | 6.50 | 5.00 | 32.61 |
11 | 25.00 | 6.50 | 77.04 | 6.50 | 75.45 | 45.91 |
12 | 25.00 | 6.50 | 35.00 | 2.30 | 100.00 | 99.04 |
13 | 10.00 | 3.00 | 60.00 | 4.00 | 45.71 | 58.41 |
14 | 25.00 | 0.61 | 35.00 | 6.50 | 24.56 | 23.60 |
15 | 25.00 | 6.50 | 35.00 | 10.70 | 88.61 | 87.64 |
16 | 40.00 | 3.00 | 60.00 | 9.00 | 7.10 | 19.80 |
17 | 50.23 | 6.50 | 35.00 | 6.50 | 94.77 | 93.81 |
18 | 25.00 | 6.50 | 35.00 | 6.50 | 97.35 | 96.08 |
19 | 25.00 | 6.50 | 35.00 | 6.50 | 98.25 | 96.08 |
20 | 25.00 | 6.50 | 35.00 | 6.50 | 94.25 | 96.08 |
21 | 40.00 | 3.00 | 10.00 | 9.00 | 37.86 | 26.53 |
Actual Removal | Actual Removal | ||
---|---|---|---|
Measures | Value | Measures | Value |
RSquare | 0.9891 | RSquare | 0.9435 |
RASE | 3.4193 | RASE | 8.649 |
Mean Abs Dev | 2.381 | Mean Abs Dev | 6.805 |
-Log likelihood | 45.022 | -Log likelihood | 14.3055 |
SSE | 198.75 | SSE | 299.23 |
Sum Freq | 17 | Sum Freq | 4 |
Item | CFX Removal |
---|---|
MSE | 55.03 |
RMSE | 7.41 |
RAE | −0.028 |
MAE | 1.61 |
RSE | 2.23 |
RRSE | 1.49 |
Adsorbent | Adsorption Capacity (mg g−1) | Synthesis Method | References |
---|---|---|---|
Anthriscus sylvestris | 724.50 | A. sylvestris powder was mixed with ceramic combustion tanks, treated with HCl and NaOH and heat activation | [25] |
Acidic pretreated jackfruit adsorbent (APJPA) | 384.62 | Jackfruit was pre-treated with HNO3 | This study |
Arundo donax L. | 285.71 | Arundo donax L. is treated with iron salt and activated at 700 degrees C. | [16] |
Chitin-AC | 245.19 | Chitin–AC is produced by activating phosphorus acid in a single step. | [17] |
Walnut shell | 233.10 | The chemical activation method uses the supply of ZnCl2 and the thermal activation method | [29] |
The alnut shell AC | 233.00 | ||
KOH AC | 137.00 | Treatment with KOH and K2CO3 solutions. | [30] |
Circuit boards | 106.48 | Pre-treatment with CuO and heat activation at 450 °C | [31] |
Alligator weed AC | 90.00 | Chemical treatments using phosphorus and NaOH and thermal activation | [32] |
PPWF-doped Phragmites australis (PA) | 85.82 | Carbon adsorbent obtained from the dopamine pigmites australis (PA) of PWF, a dust puffed waterfowl. | [33] |
Walnut shell AC | 81.60 | Pre-treatment with ZnCl2 solutions and heat treatments. | [34] |
Lotus stalk | 78.12 | Pretreated with H3PO4 and heat activation. | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Gheethi, A.A.; Mohd Salleh, M.S.; Noman, E.A.; Mohamed, R.M.S.R.; Crane, R.; Hamdan, R.; Naushad, M. Cephalexin Adsorption by Acidic Pretreated Jackfruit Adsorbent: A Deep Learning Prediction Model Study. Water 2022, 14, 2243. https://doi.org/10.3390/w14142243
Al-Gheethi AA, Mohd Salleh MS, Noman EA, Mohamed RMSR, Crane R, Hamdan R, Naushad M. Cephalexin Adsorption by Acidic Pretreated Jackfruit Adsorbent: A Deep Learning Prediction Model Study. Water. 2022; 14(14):2243. https://doi.org/10.3390/w14142243
Chicago/Turabian StyleAl-Gheethi, Adel Ali, Mohammad Shafiq Mohd Salleh, Efaq Ali Noman, Radin Maya Saphira Radin Mohamed, Rich Crane, Rafidah Hamdan, and Mu. Naushad. 2022. "Cephalexin Adsorption by Acidic Pretreated Jackfruit Adsorbent: A Deep Learning Prediction Model Study" Water 14, no. 14: 2243. https://doi.org/10.3390/w14142243
APA StyleAl-Gheethi, A. A., Mohd Salleh, M. S., Noman, E. A., Mohamed, R. M. S. R., Crane, R., Hamdan, R., & Naushad, M. (2022). Cephalexin Adsorption by Acidic Pretreated Jackfruit Adsorbent: A Deep Learning Prediction Model Study. Water, 14(14), 2243. https://doi.org/10.3390/w14142243