Study on the Sugar-Producing Effect of High-Temperature Anaerobic Straw Biosaccharification Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Source
2.1.1. Preparation of Culture Medium
2.1.2. Preparation of Reagent and Buffer Solution
2.2. Isolation, Purification, and Identification of High-Efficiency Cellulose Degrading Sugar-Producing Strain
2.3. Effect of Environmental Factors on Sugar Production Efficiency of High-Efficiency Cellulose Degrading Strains
2.3.1. Temperature
2.3.2. Initial pH
2.3.3. Culture Time
2.3.4. Substrate Concentration
2.3.5. Yeast Powder Content
2.4. Optimization of Experimental Conditions for Sugar Production Efficiency of High-Efficiency Cellulose Degrading Strain
2.4.1. Response Surface Optimization Design for Saccharification Conditions of Microcrystalline Cellulose
- Y: response model A: model constant
- : Linear coefficient of the model : Square coefficient of the model
- : Interactive coefficient of two factors of the model
2.4.2. Verification Experiment of Saccharification Ability of High-Efficiency Cellulose Degrading Strain to Microcrystalline Cellulose
2.5. Determination of Reducing Sugar Content
3. Results and Discussion
3.1. Screening and Morphological Identification of Strains
3.2. Physiological and Biochemical Characteristics and Molecular Biological Identification of FC811
3.3. Factors Influencing Cellulose Saccharification Effect of FC811 Strain
3.3.1. Effect of Temperature on the Growth of FC811 Strain and Saccharification Effect of Microcrystalline Cellulose
3.3.2. Effect of Initial pH on the Growth of FC811 Strain and Saccharification Effect of Microcrystalline Cellulose
3.3.3. Effect of Substrate Concentration on the Growth of FC811 Strain and Saccharification Effect of Microcrystalline Cellulose
3.3.4. Effect of Yeast Powder Content on the Growth of FC811 Strain and Saccharification Effect of Microcrystalline Cellulose
3.3.5. Effect of Culture Time on the Growth of FC811 Strain and Saccharification Effect of Microcrystalline Cellulose
3.3.6. Optimization of the Growth of FC811 Strain and Saccharification Effect of Microcrystalline Cellulose
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabaal, M.; Ferreira, A.F.; Silva, C.A.M.; Costa, M. Biorefineries Targeting Energy, High Value Products and Waste Valorisation Lecture Notes in Energy; Springer: Berlin/Heidelberg, Germany, 2017; Volume 57. [Google Scholar]
- Zhao, Z.-T.; Cheng, H.-M.; Wang, S.; Liu, H.-Y.; Song, Z.-M.; Zhou, J.-H.; Pang, J.-W.; Bai, S.-W.; Yang, S.-S.; Ding, J.; et al. SCC-UEFAS, an urban-ecological-feature based assessment system for sponge city construction. Environ. Sci. Ecotechnol. 2022, 12, 100188. [Google Scholar] [CrossRef]
- Zhao, S.-Y.; Chen, C.-X.; Ding, J.; Yang, S.-S.; Zang, S.Y.-N.; Qin, X.-D.; Gao, X.-L.; Song, Z.; Ren, N.-Q. Fabrication of AQ2S/GR composite photosensitizer for the simulated solar light-driven degradation of sulfapyridine. Environ. Sci. Ecotechnol. 2021, 8, 100111. [Google Scholar] [CrossRef]
- Xu, Y.H.; Li, M.F. Hydrothermal liquefaction of lignocellulose for value-added products: Mechanism, parameter and production application. Bioresour. Technol. 2021, 342, 126035. [Google Scholar] [CrossRef] [PubMed]
- Mood, S.H.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.H.; Gholami, M.; Renewable, M.A.J.; Reviews, S.E. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, B.; Feng, Y.; Cui, Q.J.B.A. Consolidated bio-saccharification: Leading lignocellulose bioconversion into the real world. Biotechnol. Adv. 2020, 40, 107535. [Google Scholar] [CrossRef]
- Yang, S.S.; Ding, M.Q.; Ren, X.R.; Zhang, Z.R.; Li, M.X.; Zhang, L.L.; Pang, J.W.; Chen, C.X.; Zhao, L.; Xing, D.F.; et al. Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. Sci. Total Environ. 2022, 828, 154458. [Google Scholar] [CrossRef]
- Yang, S.S.; Ding, M.Q.; Zhang, Z.R.; Ding, J.; Bai, S.W.; Cao, G.L.; Zhao, L.; Pang, J.W.; Xing, D.F.; Ren, N.Q.; et al. Confirmation of biodegradation of low-density polyethylene in dark-versus yellow-mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Sci. Total Environ. 2021, 789, 147915. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastav, M.; Malhotra, B.D.; Gupta, V.K.; Ramteke, P.W.; Silva, R.N.; Shukla, P.; Dubey, K.K.; Mishra, P.K. Nanoengineered cellulosic biohydrogen production via dark fermentation: A novel approach. J. Biotechnol. Adv. 2019, 37, 107384. [Google Scholar] [CrossRef]
- Xsa, B.; Rs, A.J.C.P. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydr. Polym. 2021, 261, 117884. [Google Scholar]
- Mailaram, S.; Maity, S.K. Dual liquid–liquid extraction versus distillation for the production of bio-butanol from corn, sugarcane, and lignocellulose biomass: A techno-economic analysis using pinch technology. Fuel 2022, 312, 122932. [Google Scholar] [CrossRef]
- Silva, C.; Schirmer, M.A.; Maeda, R.N.; Barcelos, C.A.; Pereira, N., Jr. Potential of giant reed (Arundo donax L.) for second generation ethanol production. Electron. J. Biotechnol. 2014, 18, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Adegboye, M.F.; Ojuederie, O.B.; Talia, P.M.; Babalola, O.O.J.B.f.B. Bioprospecting of microbial strains for biofuel production: Metabolic engineering, applications, and challenges. Biotechnol. Biofuels 2021, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Peng, L.; Huang, J.; Ran, Z.; Zhen, H.; Feng, S.; Wang, Y.; Wang, L.; Tao, X.; Peng, L.J.G.C. Mild chemical pretreatments are sufficient for bioethanol production in transgenic rice straws overproducing glucosidase. Green Chem. 2018, 20, 2047–2056. [Google Scholar]
- Zhou, Z.; Liu, D.; Zhao, X.J.R.; Reviews, S.E. Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew. Sustain. Energy Rev. 2021, 146, 111169. [Google Scholar] [CrossRef]
- Haldar, D.; Purkait, M.K. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements-ScienceDirect. Chemosphere 2020, 264, 128523. [Google Scholar] [CrossRef]
- Rs, A.; Rapc, B.; Hp, B.; Pls, B.; Tcl, A.; Whccde, F.; Yang, T.G.J.B.T. Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review-ScienceDirect. Bioresour. Technol. 2020, 298, 122467. [Google Scholar]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P.J.F.P.T. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Daehwan, K.J.M. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review. Molecules 2018, 23, 309. [Google Scholar]
- Qing, Q.; Huang, M.; He, Y.; Wang, L.; Zhang, Y.J.A.B.; Biotechnology. Dilute Oxalic Acid Pretreatment for High Total Sugar Recovery in Pretreatment and Subsequent Enzymatic Hydrolysis. Appl. Biochem. Biotechnol. 2015, 177, 1493–1507. [Google Scholar] [CrossRef]
- Wen, B.; Yuan, X.; Li, Q.X.; Liu, J.; Ren, J.; Wang, X.; Cui, Z.J.B.T. Comparison and evaluation of concurrent saccharification and anaerobic digestion of Napier grass after pretreatment by three microbial consortia. Bioresour. Technol. 2015, 175, 102–111. [Google Scholar] [CrossRef]
- Sindhu, R.; Binod, P.; Pandey, A. Biological pretreatment of lignocellulosic biomass—An overview. Bioresour. Technol. 2016, 199, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Baramee, S.; Siriatcharanon, A.K.; Ketbot, P.; Teeravivattanakit, T.; Waeonukul, R.; Pason, P.; Tachaapaikoon, C.; Ratanakhanokchai, K.; Phitsuwan, P. Biological pretreatment of rice straw with cellulase-free xylanolytic enzyme-producing Bacillus firmus K-1: Structural modification and biomass digestibility. Renew. Energy 2020, 160, 555–563. [Google Scholar] [CrossRef]
- Hou, R.; Hu, J.; Wang, Y.; Wei, H.; Gao, M.T. Bioengineering. Simultaneous production of cellulase and ferulic acid esterase by Penicillium decumbens with rice straw as the sole carbon source. J. Biosci. Bioeng. 2020, 129, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Szentner, K.; Waśkiewicz, A.; Kaźmierczak, S.; Wojciechowicz, T.; Goliński, P.; Lewandowska, E.; Wasielewski, O. Enzymatic hydrolysis of cellulose using extracts from insects. Carbohydr. Res. 2019, 485, 107811. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Singhal, G.; Joshi, S.; Choudhary, M.; Srivastava, N. Plant Extracts as Enzymes; Academic Press: Cambridge, MA, USA, 2022; pp. 209–223. [Google Scholar]
- Ellil, S.; Fonseca, L.; Uchima, C.; Cota, J.; Goldman, G.H.; Saloheimo, M.; Sacon, V.; Siika-Aho, M. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 2017, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhang, J.; Bao, J.J.B.; Engineering, B. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling. Bioprocess Biosyst. Eng. 2016, 39, 133–140. [Google Scholar] [CrossRef]
- Sheng, T.; Zhao, L.; Gao, L.F.; Liu, W.Z.; Cui, M.H.; Guo, Z.C.; Ma, X.D.; Ho, S.H.; Wang, A.J. Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose. Biotechnol. Biofuels 2016, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; KSiddique, M.; Wang, L.; Li, S. Mixing characteristics of a bubble mixing microfluidic chip for genomic DNA extraction based on magnetophoresis: CFD simulation and experiment. Electrophoresis. 2021.42, 2365–2374. [CrossRef]
- Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 1 November 2020).
- National Library of Medicine. Available online: www.ncbi.nlm.nih.gov. (accessed on 1 November 2020).
- Messaoudi, O.; Bendahou, M.; Benamar, I.; Abdelwouhid, D.E. Identification and preliminary characterization of non-polyene antibiotics secreted by new strain of actinomycete isolated from sebkha of Kenadsa, Algeria. Asian Pac. J. Trop. Biomed. 2015, 5, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Hanson, R.S. Manual of methods for general bacteriology. J. Clin. Pathol. 1981, 34, 1069. [Google Scholar]
- Madani, S.; Gheshlaghi, R.; Mahdavi, M.A.; Sobhani, M.; Elkamel, A.J.F. Optimization of the performance of a double-chamber microbial fuel cell through factorial design of experiments and response surface methodology. Fuel 2015, 150, 434–440. [Google Scholar] [CrossRef]
- Popova, L.I.; Bahl, H.; Egorova, M.A.; Leont′Eva, M.R.; Netrusov, A.I.; Tsavkelova, E.A.J.M. Isolation of Cellulose-Degrading Thermoanaerobacterium Strains from Thermophilic Methanogenic Microbial Communities. Microbiology 2021, 90, 158–165. [Google Scholar] [CrossRef]
- Lv, W.; Yu, Z. Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample. J. Appl. Microbiol. 2013, 114, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Erkmen, O. Osmotic pressure and pH effects on microorganisms. Math. Biosci. 2021, 315, 108220. [Google Scholar]
- Patsatzis, D.G.; Goussis, D.A. A new Michaelis-Menten equation valid everywhere multi-scale dynamics prevails. Math. Biosci. 2019, 315, 108220. [Google Scholar] [CrossRef]
- Jones, A.M.; Ingledew, W.M. Fuel alcohol production: Appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation. Process Biochem. 1994, 29, 483–488. [Google Scholar] [CrossRef]
- Sheng, T.; Zhao, L.; Liu, W.Z.; Gaob, L.F.; Wang, A.J. Fenton pre-treatment of rice straw with citric acid as an iron chelate reagent for enhancing saccharification. Rsc. Adv. 2017, 7, 32076–32086. [Google Scholar] [CrossRef] [Green Version]
Factor | Name | Unit | Low Level (−1) | Medium Level (0) | High Level (1) |
---|---|---|---|---|---|
A | Temperature | °C | 55 | 60 | 65 |
B | pH | 6.5 | 7 | 7.5 | |
C | Culture time | d | 5 | 6 | 7 |
D | Substrate concentration | g/L | 4 | 5 | 6 |
E | Yeast powder concentration | g/L | 1.5 | 2 | 1.5 |
Strain | YAS | Yield of Reducing Sugar (mg/L) |
---|---|---|
FC721 | + | 230.6 |
FC811 | +++ | 2764 |
Characteristics | Results | Characteristics | Results |
---|---|---|---|
Glucose | + | Mannose | + |
Microcrystalline cellulose | + | Mannitol | + |
Cellobiose | + | Filter paper | + |
Fructose | + | Sucrose | + |
Lactose | − | Maltose | + |
Xylose | − | Starch | − |
Xylan | + | Anaerobic growth | + |
Growth at 60 °C | + | Gelatin experiment | + |
Fluorescent pigment | − | CMC-Na | + |
Nitrate reduction experiment | − | Citrate | − |
Number | Temperature (°C) | pH | Culture Time (d) | Substrate Concentration (g/L) | Yeast Powder Concentration (g/L) | Soluble Sugar Yield (g/L) | |
---|---|---|---|---|---|---|---|
Actual Value | Predicted Value | ||||||
1 | 60 | 7 | 6 | 5 | 2 | 2.87 | 2.87 |
2 | 55 | 7.5 | 5 | 4 | 1.5 | 1.25 | 1.23 |
3 | 55 | 6.5 | 5 | 4 | 2.5 | 1.23 | 1.21 |
4 | 65 | 6.5 | 7 | 4 | 2.5 | 1.10 | 1.12 |
5 | 60 | 7 | 6 | 5 | 2 | 2.83 | 2.87 |
6 | 55 | 6.5 | 5 | 6 | 1.5 | 2.18 | 2.18 |
7 | 65 | 7.5 | 5 | 6 | 1.5 | 1.97 | 1.95 |
8 | 65 | 7.5 | 5 | 4 | 2.5 | 1.20 | 1.23 |
9 | 65 | 6.5 | 5 | 6 | 2.5 | 2.14 | 2.17 |
10 | 60 | 7 | 6 | 5 | 2 | 2.86 | 2.87 |
11 | 65 | 7.5 | 7 | 6 | 2.5 | 2.47 | 2.46 |
12 | 65 | 7.5 | 7 | 4 | 1.5 | 1.29 | 1.29 |
13 | 55 | 6.5 | 7 | 6 | 2.5 | 2.53 | 2.57 |
14 | 65 | 6.5 | 7 | 6 | 1.5 | 2.01 | 2.03 |
15 | 55 | 6.5 | 7 | 4 | 1.5 | 1.13 | 1.12 |
16 | 55 | 7.5 | 5 | 6 | 2.5 | 2.50 | 2.46 |
17 | 55 | 7.5 | 7 | 6 | 1.5 | 2.38 | 2.36 |
18 | 60 | 7 | 6 | 5 | 2 | 2.85 | 2.87 |
19 | 65 | 6.5 | 5 | 4 | 1.5 | 1.24 | 1.22 |
20 | 55 | 7.5 | 7 | 4 | 2.5 | 1.26 | 1.23 |
21 | 60 | 7 | 6 | 5 | 2 | 2.82 | 2.84 |
22 | 60 | 7.5 | 6 | 5 | 2 | 2.78 | 2.82 |
23 | 65 | 7 | 6 | 5 | 2 | 2.60 | 2.60 |
24 | 60 | 7 | 6 | 5 | 2 | 2.89 | 2.84 |
25 | 60 | 7 | 5 | 5 | 2 | 2.72 | 2.75 |
26 | 60 | 7 | 6 | 4 | 2 | 1.63 | 1.66 |
27 | 60 | 7 | 6 | 5 | 2 | 2.89 | 2.84 |
28 | 60 | 7 | 6 | 5 | 2 | 2.82 | 2.84 |
29 | 60 | 7 | 6 | 5 | 1.5 | 2.56 | 2.59 |
30 | 60 | 7 | 7 | 5 | 2 | 2.83 | 2.82 |
31 | 60 | 6 | 6 | 5 | 2 | 2.54 | 2.54 |
32 | 60 | 7 | 6 | 6 | 2 | 2.73 | 2.72 |
33 | 55 | 7 | 6 | 5 | 2 | 2.69 | 2.71 |
34 | 60 | 7 | 6 | 5 | 2 | 2.91 | 2.84 |
35 | 55 | 7.5 | 7 | 4 | 1.5 | 1.24 | 1.26 |
36 | 65 | 6.5 | 5 | 6 | 1.5 | 1.94 | 1.95 |
37 | 65 | 7.5 | 5 | 4 | 1.5 | 1.32 | 1.30 |
38 | 60 | 7 | 6 | 5 | 2 | 2.87 | 2.91 |
39 | 55 | 6.5 | 5 | 6 | 2.5 | 2.51 | 2.50 |
40 | 60 | 7 | 6 | 5 | 2 | 2.93 | 2.91 |
41 | 65 | 7.5 | 7 | 6 | 1.5 | 2.18 | 2.20 |
42 | 55 | 6.5 | 7 | 4 | 2.5 | 1.15 | 1.16 |
43 | 65 | 7.5 | 7 | 4 | 2.5 | 1.32 | 1.31 |
44 | 55 | 7.5 | 5 | 6 | 1.5 | 2.18 | 2.21 |
45 | 55 | 6.5 | 5 | 4 | 1.5 | 1.25 | 1.27 |
46 | 65 | 6.5 | 7 | 4 | 1.5 | 1.18 | 1.18 |
47 | 60 | 7 | 6 | 5 | 2 | 2.95 | 2.91 |
48 | 65 | 6.5 | 7 | 6 | 2.5 | 2.38 | 2.35 |
49 | 60 | 7 | 6 | 5 | 2 | 2.92 | 2.91 |
50 | 55 | 7.5 | 7 | 6 | 2.5 | 2.67 | 2.71 |
51 | 65 | 6.5 | 5 | 4 | 2.5 | 1.23 | 1.21 |
52 | 65 | 7.5 | 5 | 6 | 2.5 | 2.25 | 2.25 |
53 | 55 | 6.5 | 7 | 6 | 1.5 | 2.34 | 2.30 |
54 | 55 | 7.5 | 5 | 4 | 2.5 | 1.24 | 1.25 |
Source | Coefficient | Degree of Freedom | Sum of Square | Mean Sum of Square | F Value | p Value |
---|---|---|---|---|---|---|
Model | 22 | 24.1737 | 1.09880 | 946.52 | <0.0001 | |
Linear | 5 | 9.9579 | 1.99158 | 1715.56 | <0.0001 | |
A | −0.05576 | 1 | 0.1057 | 0.10573 | 91.08 | <0.0001 |
B | 0.03615 | 1 | 0.0446 | 0.04464 | 38.46 | <0.0001 |
C | 0.03329 | 1 | 0.0377 | 0.03769 | 32.47 | <0.0001 |
D | 0.53215 | 1 | 9.6281 | 9.62814 | 8293.74 | <0.0001 |
E | 0.06614 | 1 | 0.1407 | 0.14071 | 121.21 | <0.0001 |
Square | 5 | 8.8270 | 1.76540 | 1520.72 | <0.0001 | |
A2 | −0.1835 | 1 | 0.0815 | 0.08152 | 70.22 | <0.0001 |
B2 | −0.05790 | 1 | 0.0509 | 0.05093 | 43.87 | <0.0001 |
C2 | −0.0555 | 1 | 0.0075 | 0.00745 | 6.42 | 0.017 |
D2 | −0.6480 | 1 | 1.0167 | 1.01668 | 875.78 | <0.0001 |
E2 | −0.1861 | 1 | 0.0512 | 0.05124 | 44.14 | <0.0001 |
Interaction of two factors | 10 | 0.4281 | 0.04281 | 36.88 | <0.0001 | |
AB | 0.01147 | 1 | 0.0042 | 0.00421 | 3.63 | 0.066 |
AC | 0.00828 | 1 | 0.0022 | 0.00219 | 1.89 | 0.179 |
AD | −0.06497 | 1 | 0.1351 | 0.13507 | 116.35 | <0.0001 |
AE | −0.00559 | 1 | 0.0010 | 0.00100 | 0.86 | 0.360 |
BC | 0.02484 | 1 | 0.0198 | 0.01975 | 17.01 | <0.0001 |
BD | −0.00128 | 1 | 0.0001 | 0.00005 | 0.05 | 0.833 |
BE | 0.00259 | 1 | 0.0002 | 0.00022 | 0.19 | 0.670 |
CD | 0.04916 | 1 | 0.0773 | 0.07732 | 66.61 | <0.0001 |
CE | 0.00528 | 1 | 0.0009 | 0.00089 | 0.77 | 0.387 |
DE | 0.07653 | 1 | 0.1874 | 0.18743 | 161.45 | <0.0001 |
Residual | 31 | 0.0360 | 0.00116 | |||
Lack of fit | 21 | 0.0242 | 0.00115 | 0.98 | 0.539 | |
Pure error | 10 | 0.0118 | 0.00118 | |||
Total | 53 | 24.2097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Ding, M.; Cui, C.; Zhao, P.; Yang, S.; Ding, J.; Ren, N. Study on the Sugar-Producing Effect of High-Temperature Anaerobic Straw Biosaccharification Strain. Water 2022, 14, 2186. https://doi.org/10.3390/w14142186
Xu C, Ding M, Cui C, Zhao P, Yang S, Ding J, Ren N. Study on the Sugar-Producing Effect of High-Temperature Anaerobic Straw Biosaccharification Strain. Water. 2022; 14(14):2186. https://doi.org/10.3390/w14142186
Chicago/Turabian StyleXu, Chengjiao, Mengqi Ding, Chenhao Cui, Peichao Zhao, Shanshan Yang, Jie Ding, and Nanqi Ren. 2022. "Study on the Sugar-Producing Effect of High-Temperature Anaerobic Straw Biosaccharification Strain" Water 14, no. 14: 2186. https://doi.org/10.3390/w14142186