Soil Water Behavior of Sandy Soils under Semiarid Conditions in the Shendong Mining Area (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil Moisture Measurements
2.3. Soil Infiltration Experiments
2.4. Soil Sampling and Laboratory Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Soil Moisture and Physical Properties
3.2. Soil Infiltration Process
3.3. Available Soil Water
3.4. Soil Water Retention Capacity
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nash, M.S.; Wierenga, P.J.; Gutjahr, A. Time series analysis of soil moisture and rainfall along a line transect in arid rangeland. Soil Sci. 1991, 152, 189–198. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, S.G.; Chen, X.Y.; Chen, M.; Zhang, X.Y.; Long, L.L. Disturbance mechanism of coal mining subsidence to typical plants in a semiarid area using O–J–I–P chlorophyll a fluorescence analysis. Photosynthetica 2020, 58, 1178–1187. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I.; D’Odorico, P.; Porporato, A.; Ridolfi, L. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour. Res. 1999, 35, 3709–3722. [Google Scholar] [CrossRef]
- Lei, S.G. Monitoring and analyzing the mining impacts on key environmental elements in desert area. J. China Coal Soc. 2010, 35, 1587–1588. [Google Scholar] [CrossRef]
- Lei, S.G.; Bian, Z.F. Research progress on the environment impacts from underground coal mining in arid western area of China. Acta Ecol. Sin. 2014, 34, 2837–2843. [Google Scholar] [CrossRef]
- Cai, D.; Xu, H. Extracting Soil Moisture from Landsat Imagery of Xiamen City Using a Spectral Feature Space Composed of Fractional Vegetation Cover and Land Surface Temperature. Remote Sens. Technol. Appl. 2011, 23, 278–283. Available online: http://www.rsta.ac.cn/EN/10.11873/j.issn.1004-0323.2008.3.278 (accessed on 25 January 2022).
- Wang, J.; Liang, J.; Li, Z.; Wu, W.; Yu, J.; Han, L. Assessment of Arid area Soil Moisture Status Based on Characteristics of Surface Temperature/vegetation Index Space. Chin. J. Soil Sci. 2014, 45, 39–46. [Google Scholar] [CrossRef]
- Jackson, T.; Mansfield, K.; Saafi, M.; Colman, T.; Romine, P. Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 2008, 41, 381–390. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Miller, S.; Ardanuy, P. Spaceborne soil moisture estimation at high resolution: A microwave-optical/IR synergistic approach. Int. J. Remote Sens. 2003, 24, 4599–4622. [Google Scholar] [CrossRef]
- Ceballos, A.; Martinez-Fernández, J.; Santos, F.; Alonso, P. Soil-water behaviour of sandy soils under semi-arid conditions in the Duero Basin (Spain). J. Arid Environ. 2002, 51, 501–519. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Wang, Z. Influence of soil particle composition on soil moisture in loess profiles. Bull. Soil Water Conserv. 2009, 29, 6–15. [Google Scholar] [CrossRef]
- Chen, H. Environmental Soil Science; Science Press: Beijing, China, 2005; pp. 49–50. [Google Scholar]
- Vladimir, S.; Jan, H.; Martin, J.; Dusan, S. Soil structure and soil organic matter in water-stable aggregates under different application rates of biochar. Vietnam J. Earth Sci. 2018, 40, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Bao, H.; Hou, L.; Liu, J.; Li, L. Experiment on process of soil water infiltration and redistribution under simulated rainfall. Trans. Chin. Soc. Agric. Eng. 2011, 27, 70–75. [Google Scholar] [CrossRef]
- Morbidelli, R.; Corradini, C.; Saltalippi, C.; Brocca, L. Initial soil water content as input to field-scale infiltration and surface runoff models. Water Resour. Manag. 2012, 26, 1793–1807. [Google Scholar] [CrossRef]
- Li, G.; Feng, Q.; Zhang, F.; Cheng, A. The soil infiltration characteristics of typical grassland in Babao River Basin of Qi-lian Mountain. Agric. Res. Arid Areas 2014, 32, 60–65. [Google Scholar] [CrossRef]
- Li, X. The partiele composition of several arid region soil of Gansu province and its effect on soil moisture constants. Gansu Nongye Daxue Xuebao 1993, 4, 376–379. [Google Scholar]
- Luo, Y.X.; Liu, R.T.; Zhang, J.; Chang, H.T. Soil particle composition, fractal dimension and their effects on soil properties following sand-binding revegetation within straw checkerboard in Tengger Desert, China. Chin. J. Appl. Ecol. 2019, 30, 525–535. [Google Scholar] [CrossRef]
- Mathur, M.; Sundaramoorthy, S. Patterns of herbaceous species richness and productivity along gradients of soil moisture and nutrients in the Indian Thar Desert. J. Arid Environ. 2016, 125, 80–87. [Google Scholar] [CrossRef]
- Tillman, F.D.; Wiele, S.M.; Pool, D.R. A comparison of estimates of basin-scale soil-moisture evapotranspiration and estimates of riparian groundwater evapotranspiration with implications for water budgets in the Verde Valley, Central Arizona, USA. J. Arid Environ. 2016, 124, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z. Soil water resource use limit in semi-arid loess hilly area. Yingyong Shengtai Xuebao 2010, 21, 3029–3035. [Google Scholar] [CrossRef]
- Dong, L.; Li, S.; Jiang, Q.; Zhang, R.Y.; Cai, J.J.; Wang, Y.L.; Ma, F. Soil moisture storage of different land use types in Ningxia semi-arid loess hilly area. J. Arid Land Environ. 2011, 25, 184–189. [Google Scholar]
- Zhang, Y.; Gan, Z.; Li, R.; Wang, R.; Li, N.; Zhao, M.; Du, L.; Guo, S.; Jiang, J.; Wang, Z. Litter production rates and soil moisture influences interannual variability in litter respiration in the semi-arid Loess Plateau, China. J. Arid Land Environ. 2016, 125, 43–51. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; Domingo, F. Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain. J. Hydrol. 2004, 285, 199–214. [Google Scholar] [CrossRef]
- Fitzjohn, C.; Ternan, J.L.; Williams, A.G. Soil moisture variability in a semi-arid gully catchment: Implications for runoff and erosion control. Catena 1998, 32, 55–70. [Google Scholar] [CrossRef]
- Wang, Y. Spatial Distribution and Influence Factors of Dried Soil Layers Across the Loess Plateau. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2010. [Google Scholar]
- Fayos, C.B. The roles of texture and structure in the water retention capacity of burnt Mediterranean soils with varying rainfall. Catena 1997, 31, 219–236. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y. Analysis on flora of soil and water conservation plants in Shendong mining area. Bull. Soil Water Conserv. 2016, 36, 260–263. [Google Scholar] [CrossRef]
- Zhou, R. Influence of Coal Mining Subsidence on Properties of Sandy Soil in Erdos. Master’s Thesis, Inner Mongolia Agriculture University, Hohhot, China, 2008. [Google Scholar]
- Gan, L.; Ma, R.; Peng, Y.; Peng, X.; Mo, C.; Rainer, H. The effect of different grazing intensities on spatial distribution of soil water under Leymus chinensis and Stipa grands grassland. Ecol. Environ. Sci. 2015, 24, 1274–1279. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E.; Topp, G.C. A reexamination of the constant head well permeameter method for measuring saturated hydraulic conductivity above the water table1. Soil Sci. 1983, 136, 250. [Google Scholar] [CrossRef]
- Kuráž, V. Soil properties and water regime of reclaimed surface dumps in the North Bohemian brown-coal region—a field study. Waste Manag. 2001, 21, 147–151. [Google Scholar] [CrossRef]
- Celik, I.; Gunal, H.; Budak, M.; Akpinar, C. Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma 2010, 160, 236–243. [Google Scholar] [CrossRef]
- Ahmad, N.; Hassan, F.; Qadir, G. Effect of subsurface soil compaction and improvement measures on soil properties. Int. J. Agric. Biol. 2007, 9, 509–513. [Google Scholar]
- Green, R.E.; Ahuja, L.R.; Chong, S.K. Hydraulic conductivity, diffusivity, and sorptivity of unsaturated soils: Field methods. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 771–798. [Google Scholar] [CrossRef]
- Holliday, V.T. Methods of soil analysis, part 1, physical and mineralogical methods (2nd edition), A. Klute, Ed. 1986, American Society of Agronomy, Agronomy Monographs 9(1), Madison, Wisconsin. Geoarchaeology 1990, 5, 87–89. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, M. Spatial variability of soil moisture content and soil organic matter content in Oasis Marginal Zone. Arid Zone Res. 2014, 31, 812–818. [Google Scholar] [CrossRef]
- Carter, D.L.; Mortland, M.M.; Kemper, W.D. “Specific surface”—Methods of Soil Analysis: Part 1. Phys. Mineral. Methods 1986, 5, 413–423. [Google Scholar]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis: Part I—Physical and Mineralogical Methods; Campbell, G.S., Jackson, R.D., Mortland, M.M., Nielsen, D.R., Klute, A., Eds.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3. Chemical Methods, SSSA Book Series No. 5; SSSA and ASA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, X.; Yu, W. Studies on soil water characteristic curves and infiltration capability of Maowusu sandy soil. For. Res. 2004, 17, 9–14. [Google Scholar] [CrossRef]
- Liu, J.; Xu, S.; Liu, H. A review of development in estimating soil water retention characteristics from soil data. J. Hydraul. Eng. 2004, 2, 68–76. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, Z.; Zhong, M. Soil moisture alters the response of soil organic carbon mineralization to litter addition. Ecosystems 2016, 19, 450–460. [Google Scholar] [CrossRef]
- Liu, C.L.; Shao, M.A.; Zhang, X.C.; Li, S.Q. Study on Soil Moisture Spatial Variability of Degraded Slope in Shenmu Wind-Water Erosion Crisscross Region. J. Soil Water Conserv. 2005, 33, 132–135. [Google Scholar]
- Liu, C.; Shao, M. Spatial variation of saturated hydraulic conductivity and soil water of the surface layer of a slope on the Loess Plateau. Sci. Soil Water Conserv. 2009, 7, 13–18. [Google Scholar] [CrossRef]
- Bian, Z.; Lei, S.; Chang, L.; Zhang, R. Affecting factors analysis of soil moisture for arid mining area based on TM images. J. China Coal Soc. 2009, 34, 520–525. [Google Scholar] [CrossRef]
- Bi, Y.; Zou, H.; Peng, C.; Shi, L. Effects of mining subsidence on soil water movement in sandy area. J. China Coal Soc. 2014, 39, 490–496. [Google Scholar] [CrossRef]
- Mao, L.; Bralts, V.F.; Pan, Y.; Liu, H.; Lei, T. Methods for measuring soil infiltration: State of the art. Int. J. Agric. Biol 2008, 1, 22–30. [Google Scholar] [CrossRef]
- Kidron, G.J.; Yaalon, D.H.; Vonshak, A. Two causes for runoff initiation on microbiotic crusts: Hydrophobicity and pore clogging. Soil Sci. 1999, 164, 18–27. [Google Scholar] [CrossRef]
- Poesen, J.; Ingelmo Sanchez, F.; Mucher, H. The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer. Earth Surf. Process. Landf. 1990, 15, 653–671. [Google Scholar] [CrossRef]
- De Vries, J.; Chow, T.L. Hydrologic behavior of a forested mountain soil in coastal British Columbia. Water Resour. Res. 1978, 14, 935–942. [Google Scholar] [CrossRef]
- Meek, B.D.; Detar, W.R.; Rechel, E.R.; Carter, L.M.; Rolph, D. Infiltration rate as affected by an alfalfa and no-till cotton cropping system. Soil Sci. Soc. Am. J. 1990, 54, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Jury, W.A.; Horton, R. Soil Physics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Wang, H.; Yang, W.; Zhang, X. Soil water characteristics of woodlands on slope in loess areas in West Shaanxi. Agric. Res. Arid Areas 2005, 23, 147–150. [Google Scholar] [CrossRef]
- Zhou, W. A Study on Available Water Capacity of Main Soil Types in China Based on GIS. Master Thesis, Nanjing Agricultural University, Nanjing, China, 2003. [Google Scholar] [CrossRef]
- Fares, A.; Alva, A.K. Soil water components based on capacitance probes in a sandy soil. Soil Sci. Soc. Am. J. 2000, 64, 311–318. [Google Scholar] [CrossRef]
- Ingelmo, F.; Cuadrado, S.; Ibanez, A.; Hernandez, J. Hydric properties of some Spanish soils in relation to their rock fragment content: Implications for runoff and vegetation. Catena 1994, 23, 73–85. [Google Scholar] [CrossRef]
- da Costa, A.; Albuquerque, J.A.; da Costa, A.; Pertile, P.; da Silva, F.R. Water retention and availability in soils of the State of Santa Catarina-Brazil: Effect of textural classes, soil classes and lithology. Rev. Bras. Cienc. Solo 2013, 37, 1535–1548. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Huang, M.; Fan, J. Study on water retention capacity for drained soils with different textural layering. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2013, 29, 105–111. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, J.; Wang, R.; Han, X.; Chen, Y. Soil structure, nutrient accumulation and water retention character in eroded hilly red soil after virescence. J. Soil Water Conserv. 2000, 14, 79–82. [Google Scholar] [CrossRef]
- Su, Y.; Zhu, J.; Wang, P.; Wang, D.B.; Lin, Y. Research progress on soil water holding capacity. Chin. Agric. Sci. Bull. 2013, 29, 140–145. [Google Scholar] [CrossRef]
- Franco-Vizcaíno, E. Water regime in soils and plants along an aridity gradient in central Baja California, Mexico. J. Arid Environ. 1994, 27, 309–323. [Google Scholar] [CrossRef]
Plot | Layer (cm) | Texture Classification (USDA) | Sand (%) | Silt (%) | Clay (%) | OM (%) | BD (g cm–3) | Ksat (cm h–1) |
---|---|---|---|---|---|---|---|---|
TS1 | 0–20 | Loamy Sand | 83.29 | 9.83 | 6.88 | 0.52 | 1.68 | 38.67 |
20–40 | Loamy Sand | 80.15 | 9.71 | 10.14 | 0.31 | 1.67 | 14.97 | |
40–60 | Sandy Loam | 79.10 | 8.68 | 12.23 | 0.32 | 1.74 | 53.33 | |
TS2 | 0–20 | Loamy Sand | 85.16 | 11.12 | 3.73 | 0.54 | 1.69 | 47.33 |
20–40 | Loamy Sand | 84.10 | 10.25 | 5.66 | 0.41 | 1.76 | 54.00 | |
40–60 | Loamy Sand | 81.02 | 9.87 | 9.12 | 0.39 | 1.69 | 15.27 | |
MS1 | 0–20 | Loamy Sand | 80.20 | 9.48 | 10.33 | 0.58 | 1.65 | 21.27 |
20–40 | Loamy Sand | 79.64 | 9.13 | 11.24 | 0.46 | 1.66 | 5.79 | |
40–60 | Loamy Sand | 79.67 | 9.12 | 11.22 | 0.45 | 1.74 | 5.01 | |
MS2 | 0–20 | Sandy Loam | 75.96 | 13.89 | 10.16 | 0.56 | 1.66 | 7.53 |
20–40 | Sandy Loam | 75.54 | 11.11 | 13.35 | 0.53 | 1.51 | 10.32 | |
40–60 | Sandy Loam | 75.89 | 11.12 | 12.99 | 0.34 | 1.61 | 16.81 | |
BS1 | 0–20 | Loamy Sand | 84.71 | 8.59 | 6.70 | 0.50 | 1.80 | 18.60 |
20–40 | Loamy Sand | 84.55 | 9.08 | 6.38 | 0.29 | 1.79 | 15.51 | |
40–60 | Loamy Sand | 84.01 | 7.66 | 8.33 | 0.32 | 1.70 | 14.55 | |
BS2 | 0–20 | Sandy Loam | 78.97 | 9.54 | 11.5 | 0.60 | 1.59 | 11.97 |
20–40 | Sandy Loam | 78.48 | 8.91 | 12.61 | 0.54 | 1.73 | 10.44 | |
40–60 | Sandy Loam | 78.59 | 8.79 | 12.63 | 0.42 | 1.66 | 5.55 | |
Aver. | Loamy Sand | 80.50 | 9.77 | 9.73 | 0.45 | 1.69 | 20.38 | |
SD | 3.16 | 1.39 | 2.85 | 0.10 | 0.07 | 16.29 | ||
CV (%) | 3.92 | 14.22 | 29.32 | 22.85 | 4.24 | 79.91 |
Plot | Layer (cm) | Soil Water Retention Curve | Correlation | FC (%) | WP (%) | AWC (%) |
---|---|---|---|---|---|---|
TS1 | 0−20 | y = 84.79x − 0.371 | 0.989 | 23.17 | 5.62 | 17.55 |
20−40 | y = 81.67x − 0.352 | 0.988 | 23.85 | 6.22 | 17.63 | |
40−60 | y = 86.85x − 0.348 | 0.997 | 25.72 | 6.82 | 18.90 | |
TS2 | 0−20 | y = 80.89x − 0.348 | 0.988 | 23.96 | 6.35 | 17.61 |
20−40 | y = 85.35x − 0.346 | 0.996 | 25.46 | 6.79 | 18.67 | |
40−60 | y = 82.54x − 0.334 | 0.989 | 24.79 | 6.67 | 18.12 | |
MS1 | 0−20 | y = 64.64x − 0.314 | 0.991 | 21.56 | 6.50 | 15.06 |
20−40 | y = 96.93x − 0.368 | 0.987 | 26.77 | 6.57 | 20.20 | |
40−60 | y = 91.34x − 0.344 | 0.988 | 27.43 | 7.38 | 20.05 | |
MS2 | 0−20 | y = 86.40x − 0.349 | 0.973 | 25.50 | 6.73 | 18.77 |
20−40 | y = 82.14x − 0.325 | 0.975 | 26.37 | 7.63 | 18.74 | |
40−60 | y = 85.19x − 0.320 | 0.983 | 27.83 | 8.20 | 19.63 | |
BS1 | 0−20 | y = 75.74x − 0.354 | 0.991 | 21.97 | 5.69 | 16.28 |
20−40 | y = 79.35x − 0.353 | 0.982 | 23.09 | 6.00 | 17.09 | |
40−60 | y = 92.41x − 0.361 | 0.995 | 26.72 | 6.74 | 19.98 | |
BS2 | 0−20 | y = 104.90x − 0.373 | 0.996 | 28.45 | 6.86 | 21.59 |
20−40 | y = 108.52x − 0.364 | 0.995 | 30.39 | 7.58 | 22.81 | |
40−60 | y = 107.11x − 0.350 | 0.982 | 31.50 | 8.28 | 23.22 | |
Average | 25.81 | 6.81 | 19.00 | |||
CV (%) | 10.50 | 11.12 | 11.16 |
Plot | 0 h | 1 h | 10 h | 48 h |
---|---|---|---|---|
TS1 | 8.79 | 33.85 | 22.1 | 15.77 |
TS2 | 9.57 | 35.38 | 27.175 | 17.94 |
MS1 | 14.76 | 36.733 | 30.56 | 20.41 |
MS2 | 14.11 | 38.05 | 29.19 | 22.15 |
BS1 | 10.69 | 37.41 | 24.8 | 18.43 |
BS2 | 15.51 | 38.22 | 32.45 | 29.21 |
AVERAGE | 12.2383 | 36.60717 | 27.7125 | 21.985 |
CV (%) | 21.61 | 4.24 | 12.59 | 22.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Guo, Y.; Long, L.; Lei, S. Soil Water Behavior of Sandy Soils under Semiarid Conditions in the Shendong Mining Area (China). Water 2022, 14, 2159. https://doi.org/10.3390/w14142159
Liu Y, Guo Y, Long L, Lei S. Soil Water Behavior of Sandy Soils under Semiarid Conditions in the Shendong Mining Area (China). Water. 2022; 14(14):2159. https://doi.org/10.3390/w14142159
Chicago/Turabian StyleLiu, Ying, Yangnan Guo, Linli Long, and Shaogang Lei. 2022. "Soil Water Behavior of Sandy Soils under Semiarid Conditions in the Shendong Mining Area (China)" Water 14, no. 14: 2159. https://doi.org/10.3390/w14142159