Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria, Biofilm Formation, and Preparation of LAE Solution
2.2. Setup of Flow Cell System and Calculation of Shear Rate
2.3. Image Capture and Data Processing
2.4. Motility Test
2.5. Confocal Laser Scanning Microscopy (CLSM)
3. Results and Discussion
3.1. Effects of Shear Rate on Biofilm Detachment
3.2. Effects of LAE Concentration and Dosing Time on Biofilm Detachment
3.3. Effects of LAE on the Motility of Pseudomonas aeruginosa
3.4. Implications and Prospects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Logan, B.E.; Elimelech, M. Membrane-Based Processes for Sustainable Power Generation Using Water. Nature 2012, 488, 313–319. [Google Scholar] [CrossRef]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Tang, C.Y.; Yang, Z.; Guo, H.; Wen, J.J.; Nghiem, L.D.; Cornelissen, E. Potable Water Reuse through Advanced Membrane Technology. Environ. Sci. Technol. 2018, 52, 10215–10223. [Google Scholar] [CrossRef] [Green Version]
- Tijing, L.D.; Woo, Y.C.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, H.K. Fouling and Its Control in Membrane Distillation—A Review. J. Membr. Sci. 2015, 475, 215–244. [Google Scholar] [CrossRef]
- Meng, S.; Meng, X.; Fan, W.; Liang, D.; Wang, L.; Zhang, W.; Liu, Y. The Role of Transparent Exopolymer Particles (TEP) in Membrane Fouling: A Critical Review. Water Res. 2020, 181, 115930. [Google Scholar] [CrossRef]
- Bogler, A.; Lin, S.; Bar-Zeev, E. Biofouling of Membrane Distillation, Forward Osmosis and Pressure Retarded Osmosis: Principles, Impacts and Future Directions. J. Membr. Sci. 2017, 542, 378–398. [Google Scholar] [CrossRef]
- Kucera, J. Biofouling of Polyamide Membranes: Fouling Mechanisms, Current Mitigation and Cleaning Strategies, and Future Prospects. Membranes 2019, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Firouzjaei, M.D.; Seyedpour, S.F.; Aktij, S.A.; Giagnorio, M.; Bazrafshan, N.; Mollahosseini, A.; Samadi, F.; Ahmadalipour, S.; Firouzjaei, F.D.; Esfahani, M.R.; et al. Recent Advances in Functionalized Polymer Membranes for Biofouling Control and Mitigation in Forward Osmosis. J. Membr. Sci. 2020, 596, 117604. [Google Scholar] [CrossRef]
- Sun, P.-F.; Jang, Y.; Ham, S.-Y.; Ryoo, H.; Park, H.-D. Effects of Reverse Solute Diffusion on Membrane Biofouling in Pressure-Retarded Osmosis Processes. Desalination 2021, 512, 115145. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, M.; Wang, F.; Meng, F.; Liao, B.Q.; Hong, H.; Chen, J.; Gao, W. A Critical Review of Extracellular Polymeric Substances (EPSs) in Membrane Bioreactors: Characteristics, Roles in Membrane Fouling and Control Strategies. J. Membr. Sci. 2014, 460, 110–125. [Google Scholar] [CrossRef]
- Sun, P.-F.; Kim, T.-S.; Kim, H.-S.; Ham, S.-Y.; Jang, Y.; Park, Y.-G.; Tang, C.Y.; Park, H.-D. Improved Anti-biofouling Performance of Pressure Retarded Osmosis (PRO) by Dosing with Chlorhexidine Gluconate. Desalination 2020, 481, 114376. [Google Scholar] [CrossRef]
- Herzberg, M.; Kang, S.; Elimelech, M. Role of Extracellular Polymeric Substances (EPS) in Biofouling of Reverse Osmosis Membranes. Environ. Sci. Technol. 2009, 43, 4393–4398. [Google Scholar] [CrossRef]
- Herzberg, M.; Elimelech, M. Biofouling of Reverse Osmosis Membranes: Role of Biofilm-Enhanced Osmotic Pressure. J. Membr. Sci. 2007, 295, 11–20. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, S.; Qiao, Z.; Zhou, Y.; Song, B.; Wang, Z.; Wang, J. Reverse Osmosis Membranes with Guanidine and Amine Enriched Surface for Biofouling and Organic Fouling Control. Desalination 2018, 430, 74–85. [Google Scholar] [CrossRef]
- Bucs, S.S.; Farhat, N.; Kruithof, J.C.; Picioreanu, C.; van Loosdrecht, M.C.M.; Vrouwenvelder, J.S. Review on Strategies for Biofouling Mitigation in Spiral Wound Membrane Systems. Desalination 2018, 434, 189–197. [Google Scholar] [CrossRef]
- Park, K.-H.; Sun, P.-F.; Kang, E.H.; Han, G.D.; Kim, B.J.; Jang, Y.; Lee, S.-H.; Shim, J.H.; Park, H.-D. Photocatalytic Anti-biofouling Performance of Nanoporous Ceramic Membranes Treated by Atomic Layer Deposited ZnO. Sep. Purif. Technol. 2021, 272, 118935. [Google Scholar] [CrossRef]
- Liu, C.; Faria, A.F.; Ma, J.; Elimelech, M. Mitigation of Biofilm Development on Thin-Film Composite Membranes Functionalized with Zwitterionic Polymers and Silver Nanoparticles. Environ. Sci. Technol. 2017, 51, 182–191. [Google Scholar] [CrossRef]
- Khan, R.; Wang, H.; Li, Y.; Yu, S.; Khan, M.K.; Xiao, K.; Huang, X. Surface Grafting of Reverse Osmosis Membrane with Chlorhexidine Using Biopolymer Alginate Dialdehyde as a Facile Green Platform for In Situ Biofouling Control. ACS Appl. Mater. Interfaces 2020, 12, 37515–37526. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.; Wang, J.; Cao, B.; Tang, C.Y. In Situ Reduction of Silver by Polydopamine: A Novel Antimicrobial Modification of a Thin-Film Composite Polyamide Membrane. Environ. Sci. Technol. 2016, 50, 9543–9550. [Google Scholar] [CrossRef]
- Oh, H.-S.; Constancias, F.; Ramasamy, C.; Tang, P.Y.P.; Yee, M.O.; Fane, A.G.; McDougald, D.; Rice, S.A. Biofouling Control in Reverse Osmosis by Nitric Oxide Treatment and Its Impact on the Bacterial Community. J. Membr. Sci. 2018, 550, 313–321. [Google Scholar] [CrossRef]
- Bar-Zeev, E.; Elimelech, M. Reverse Osmosis Biofilm Dispersal by Osmotic Back-Flushing: Cleaning via Substratum Perforation. Environ. Sci. Technol. Lett. 2014, 1, 162–166. [Google Scholar] [CrossRef]
- Kim, D.; Jung, S.; Sohn, J.; Kim, H.; Lee, S. Biocide Application for Controlling Biofouling of SWRO Membranes—An Overview. Desalination 2009, 238, 43–52. [Google Scholar] [CrossRef]
- Gohil, J.M.; Suresh, A.K. Chlorine Attack on Reverse Osmosis Membranes: Mechanisms and Mitigation Strategies. J. Membr. Sci. 2017, 541, 108–126. [Google Scholar] [CrossRef]
- Al-Abri, M.; Al-Ghafri, B.; Bora, T.; Dobretsov, S.; Dutta, J.; Castelletto, S.; Rosa, L.; Boretti, A. Chlorination Disadvantages and Alternative Routes for Biofouling Control in Reverse Osmosis Desalination. NPJ Clean Water 2019, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.T.; Hong, P.Y.; Nada, N.; Croue, J.P. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling? Water Res. 2015, 78, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Bertheas, U.; Majamaa, K.; Arzu, A.; Pahnke, R. Use of DBNPA to Control Biofouling in RO Systems. Desalin. Water Treat. 2009, 3, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Da-Silva-Correa, L.H.; Smith, H.; Thibodeau, M.C.; Welsh, B.; Buckley, H.L. The Application of Non-oxidizing Biocides to Prevent Biofouling in Reverse Osmosis Polyamide Membrane Systems: A Review. J. Water Supply Res. Technol. Aqua 2022, 71, 261–292. [Google Scholar] [CrossRef]
- Fernández, C.E.; Aspiras, M.; Dodds, M.W.; González-Cabezas, C.; Rickard, A.H. Combinatorial Effect of Magnolia Bark Extract and Ethyl Lauroyl Arginate against Multi-species Oral Biofilms: Food Additives with the Potential to Prevent Biofilm-Related Oral Diseases. J. Funct. Foods. 2018, 47, 48–55. [Google Scholar] [CrossRef]
- Scriboni, A.B.; Couto, V.M.; Ribeiro, L.N.d.M.; Freires, I.A.; Groppo, F.C.; de Paula, E.; Franz-Montan, M.; Cogo-Müller, K. Fusogenic Liposomes Increase the Antimicrobial Activity of Vancomycin Against Staphylococcus aureus Biofilm. Front Pharmacol. 2019, 10, 1401. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.; Pereira, M.O.; Vieira, M.J. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes. Water Res. 2005, 39, 478–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, E.; Seguer, J.; Rocabayera, X.; Manresa, A. Cellular effects of monohydrochloride of l-arginine, Nα-lauroyl ethylester (LAE) on exposure to Salmonella typhimurium and Staphylococcus aureus. J. Appl. Microbiol. 2004, 96, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Manso, S.; Wrona, M.; Salafranca, J.; Nerín, C.; Alfonso, M.J.; Caballero, M.Á. Evaluation of New Antimicrobial Materials Incorporating Ethyl Lauroyl Arginate or Silver into Different Matrices, and Their Safety in Use as Potential Packaging. Polymers 2021, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, D.R.; Rocabayera, X.; Ruckman, S.; Segret, R.; Shaw, D. Metabolism and Pharmacokinetics of Ethyl N(Alpha)-Lauroyl-L-Arginate Hydrochloride in Human Volunteers. Food Chem. Toxicol. 2009, 47, 2711–2715. [Google Scholar] [CrossRef] [PubMed]
- Ruckman, S.A.; Rocabayera, X.; Borzelleca, J.F.; Sandusky, C.B. Toxicological and Metabolic Investigations of the Safety of N-α-Lauroyl-l-arginine Ethyl Ester Monohydrochloride (LAE). Food Chem. Toxicol. 2004, 42, 245–259. [Google Scholar] [CrossRef]
- Kim, T.-S.; Park, H.-D. Lauroyl Arginate Ethyl: An Effective Antibiofouling Agent Applicable for Reverse Osmosis Processes Producing Potable Water. J. Membr. Sci. 2016, 507, 24–33. [Google Scholar] [CrossRef]
- Kim, T.-S.; Antoinette, M.; Park, H.-D. Combination of Lauroyl Arginate Ethyl and Nisin for Biofouling Control in Reverse Osmosis Processes. Desalination 2018, 428, 12–20. [Google Scholar] [CrossRef]
- Tolker-Nielsen, T.; Ghannoum, M.; Parsek, M.; Whiteley, M.; Mukherjee, P. Biofilm Development. Microbiol Spectr. 2015, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Kearns, D.B. A Field Guide to Bacterial Swarming Motility. Nat. Rev. Microbiol. 2010, 8, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Fuente-Núñez, C.d.l.; Korolik, V.; Bains, M.; Nguyen, U.; Breidenstein, E.B.M.; Horsman, S.; Lewenza, S.; Burrows, L.; Hancock, R.E.W. Inhibition of Bacterial Biofilm Formation and Swarming Motility by a Small Synthetic Cationic Peptide. Antimicrob. Agents Chemother. 2012, 56, 2696–2704. [Google Scholar] [CrossRef] [Green Version]
- Semião, A.J.C.; Habimana, O.; Cao, H.; Heffernan, R.; Safari, A.; Casey, E. The Importance of Laboratory Water Quality for Studying Initial Bacterial Adhesion during NF Filtration Processes. Water Res. 2013, 47, 2909–2920. [Google Scholar] [CrossRef] [Green Version]
- Sweity, A.; Oren, Y.; Ronen, Z.; Herzberg, M. The Influence of Antiscalants on Biofouling of RO Membranes in Seawater Desalination. Water Res. 2013, 47, 3389–3398. [Google Scholar] [CrossRef] [PubMed]
- Ziemba, C.; Khavkin, M.; Priftis, D.; Acar, H.; Mao, J.; Benami, M.; Gottlieb, M.; Tirrell, M.; Kaufman, Y.; Herzberg, M. Antifouling Properties of a Self-Assembling Glutamic Acid-Lysine Zwitterionic Polymer Surface Coating. Langmuir 2019, 35, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.E.; Bar-Zeev, E.; Elimelech, M. Biofouling in Forward Osmosis and Reverse Osmosis: Measurements and Mechanisms. J. Membr. Sci. 2015, 493, 703–708. [Google Scholar] [CrossRef]
- Farhat, N.M.; Vrouwenvelder, J.S.; Van Loosdrecht, M.C.M.; Bucs, S.S.; Staal, M. Effect of Water Temperature on Biofouling Development in Reverse Osmosis Membrane Systems. Water Res. 2016, 103, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Hoek, E.M.V.; Elimelech, M. Cake-Enhanced Concentration Polarization: A New Fouling Mechanism for Salt-Rejecting Membranes. Environ. Sci. Technol. 2003, 37, 5581–5588. [Google Scholar] [CrossRef]
- Nejadnik, M.R.; van der Mei, H.C.; Busscher, H.J.; Norde, W. Determination of the Shear Force at the Balance between Bacterial Attachment and Detachment in Weak-Adherence Systems, Using a Flow Displacement Chamber. Appl. Environ. Microbiol. 2008, 74, 916–919. [Google Scholar] [CrossRef] [Green Version]
- Flemming, H.-C. Reverse Osmosis Membrane Biofouling. Exp. Therm. Fluid Sci. 1997, 14, 382–391. [Google Scholar] [CrossRef]
- Ying, W.; Gitis, V.; Lee, J.; Herzberg, M. Effects of Shear Rate on Biofouling of Reverse Osmosis Membrane during Tertiary Wastewater Desalination. J. Membr. Sci. 2013, 427, 390–398. [Google Scholar] [CrossRef]
- Paramonova, E.; Kalmykowa, O.J.; van der Mei, H.C.; Busscher, H.J.; Sharma, P.K. Impact of Hydrodynamics on Oral Biofilm Strength. J. Dent. Res. 2009, 88, 922–926. [Google Scholar] [CrossRef]
- Radu, A.I.; Vrouwenvelder, J.S.; van Loosdrecht, M.C.M.; Picioreanu, C. Effect of Flow Velocity, Substrate Concentration and Hydraulic Cleaning on Biofouling of Reverse Osmosis Feed Channels. Chem. Eng. J. 2012, 188, 30–39. [Google Scholar] [CrossRef]
- Al Ashhab, A.; Gillor, O.; Herzberg, M. Biofouling of Reverse-Osmosis Membranes under Different Shear Rates during Tertiary Wastewater Desalination: Microbial Community Composition. Water Res. 2014, 67, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.S.; Ham, S.Y.; Park, B.B.; Byun, Y.; Park, H.D. Lauroyl Arginate Ethyl Blocks the Iron Signals Necessary for Pseudomonas aeruginosa Biofilm Development. Front. Microbiol. 2017, 8, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topa, S.H.; Subramoni, S.; Palombo, E.A.; Kingshott, P.; Rice, S.A.; Blackall, L.L. Cinnamaldehyde Disrupts Biofilm Formation and Swarming Motility of Pseudomonas aeruginosa. Microbiology 2018, 164, 1087–1097. [Google Scholar] [CrossRef]
- Singh, P.K.; Parsek, M.R.; Greenberg, E.P.; Welsh, M.J. A Component of Innate Immunity Prevents Bacterial Biofilm Development. Nature 2002, 417, 552–555. [Google Scholar] [CrossRef]
- Boles, B.R.; Thoendel, M.; Singh, P.K. Rhamnolipids Mediate Detachment of Pseudomonas aeruginosa from Biofilms. Mol. Microbiol. 2005, 57, 1210–1223. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, F.; Han, F.; Prinyawiwatkul, W.; No, H.K.; Ge, B. Evaluation of Diffusion and Dilution Methods to Determine the Antimicrobial Activity of Water-Soluble Chitosan Derivatives. J. Appl. Microbiol. 2013, 114, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of Diffusion and Dilution Methods to Determine the Antibacterial Activity of Plant Extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef]
- Lai, S.; Tremblay, J.; Déziel, E. Swarming Motility: A Multicellular Behaviour Conferring Antimicrobial Resistance. Environ. Microbiol. 2009, 11, 126–136. [Google Scholar] [CrossRef]
- Wagner, M.; Horn, H. Optical Coherence Tomography in Biofilm Research: A Comprehensive Review. Biotechnol. Bioeng. 2017, 114, 1386–1402. [Google Scholar] [CrossRef]
- Teodósio, J.S.; Simões, M.; Melo, L.F.; Mergulhão, F.J. Flow Cell Hydrodynamics and Their Effects on E. coli Biofilm Formation under Different Nutrient Conditions and Turbulent Flow. Biofouling 2011, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, D.; Ziemba, C.; Herzberg, M. Revisiting Interrelated Effects of Extracellular Polysaccharides during Biofouling of Reverse Osmosis Membranes: Viscoelastic Properties and Biofilm Enhanced Osmotic Pressure. J. Membr. Sci. 2017, 523, 394–401. [Google Scholar] [CrossRef]
- Flemming, H.C.; Schaule, G.; Griebe, T.; Schmitt, J.; Tamachkiarowa, A. Biofouling—The Achilles Heel of Membrane Processes. Desalination 1997, 113, 215–225. [Google Scholar] [CrossRef]
- Pang, C.M.; Hong, P.; Guo, H.; Liu, W.-T. Biofilm Formation Characteristics of Bacterial Isolates Retrieved from a Reverse Osmosis Membrane. Environ. Sci. Technol. 2005, 39, 7541–7550. [Google Scholar] [CrossRef]
- Habimana, O.; Semião, A.J.C.; Casey, E. The Role of Cell-Surface Interactions in Bacterial Initial Adhesion and Consequent Biofilm Formation on Nanofiltration/Reverse Osmosis Membranes. J. Membr. Sci. 2014, 454, 82–96. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, P.-F.; Kim, T.-S.; Ham, S.-Y.; Jang, Y.-S.; Park, H.-D. Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time. Water 2022, 14, 2158. https://doi.org/10.3390/w14142158
Sun P-F, Kim T-S, Ham S-Y, Jang Y-S, Park H-D. Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time. Water. 2022; 14(14):2158. https://doi.org/10.3390/w14142158
Chicago/Turabian StyleSun, Peng-Fei, Taek-Seung Kim, So-Young Ham, Yong-Sun Jang, and Hee-Deung Park. 2022. "Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time" Water 14, no. 14: 2158. https://doi.org/10.3390/w14142158
APA StyleSun, P.-F., Kim, T.-S., Ham, S.-Y., Jang, Y.-S., & Park, H.-D. (2022). Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time. Water, 14(14), 2158. https://doi.org/10.3390/w14142158