Density and Diversity Differences of Contemporary and Subfossil Cladocera Assemblages: A Case Study in an Oxbow Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Method
2.2.1. Field and Laboratory Methods
2.2.2. Cladocera Analyses
2.3. Statistical Analysis
3. Results
3.1. Cladocera Assemblage
3.2. Cladocera Assemblage Correlation with Physical and Chemical Variables
3.3. Beta-Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meerhoff, M.; Mazzeo, N.; Moss, B.; Rodríguez-Gallego, L. The Structuring Role of Free-Floating versus Submerged Plants in a Subtropical Shallow Lake. Aquat. Ecol. 2003, 37, 377–391. [Google Scholar] [CrossRef]
- Kuczyńska-Kippen, N.M.; Nagengast, B. The Influence of the Spatial Structure of Hydromacrophytes and Differentiating Habitat on the Structure of Rotifer and Cladoceran Communities. Hydrobiologia 2006, 559, 203–212. [Google Scholar] [CrossRef]
- Berta, C.; Tóthmérész, B.; Wojewódka, M.; Augustyniuk, O.; Korponai, J.; Bertalan-Balázs, B.; Nagy, A.S.; Grigorszky, I.; Gyulai, I. Community Response of Cladocera to Trophic Stress by Biomanipulation in a Shallow Oxbow Lake. Water 2019, 11, 929. [Google Scholar] [CrossRef] [Green Version]
- Wetzel, R.G. Clean Water: A Fading Resource. In The Dynamics and Use of Lacustrine Ecosystems; Ilmavirta, V., Jones, R.I., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 21–30. ISBN 978-94-010-5218-4. [Google Scholar]
- Carpenter, S.R.; Ludwig, D.; Brock, W.A. Management of eutrophication for lakes subject to potentially irreversible change. Ecol. Appl. 1999, 9, 751–771. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and Harmful Algal Blooms: A Scientific Consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havens, K.E. Secondary Nitrogen Limitation in a Subtropical Lake Impacted by Non-Point Source Agricultural Pollution. Environ. Pollut. 1995, 89, 241–246. [Google Scholar] [CrossRef]
- Kurek, J.; Korosi, J.B.; Jeziorski, A.; Smol, J.P. Establishing Reliable Minimum Count Sizes for Cladoceran Subfossils Sampled from Lake Sediments. J. Paleolimnol. 2010, 44, 603–612. [Google Scholar] [CrossRef]
- Krztoń, W.; Pudaś, K.; Pociecha, A.; Strzesak, M.; Kosiba, J.; Walusiak, E.; Szarek-Gwiazda, E.; Wilk-Woźniak, E. Microcystins Affect Zooplankton Biodiversity in Oxbow Lakes: Microcystins Affect Zooplankton. Environ. Toxicol. Chem. 2017, 36, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Krztoń, W.; Kosiba, J.; Pociecha, A.; Wilk-Woźniak, E. The Effect of Cyanobacterial Blooms on Bio- and Functional Diversity of Zooplankton Communities. Biodivers. Conserv. 2019, 28, 1815–1835. [Google Scholar] [CrossRef] [Green Version]
- de Bernardi, R.; Giussani, G.; Manca, M. Cladocera: Predators and Prey. Hydrobiologia 1987, 145, 225–243. [Google Scholar] [CrossRef]
- Abrantes, N.; Antunes, S.C.; Pereira, M.J.; Gonçalves, F. Seasonal Succession of Cladocerans and Phytoplankton and Their Interactions in a Shallow Eutrophic Lake (Lake Vela, Portugal). Acta Oecologica 2006, 29, 54–64. [Google Scholar] [CrossRef]
- Dodson, S.L.; Cáceres, C.E.; Rogers, D.C. Cladocera and Other Branchiopoda. In Ecology and Classification of North American Freshwater Invertebrates; Elsevier: Amsterdam, The Netherlands, 2010; pp. 773–827. ISBN 978-0-12-374855-3. [Google Scholar]
- Krause, A.E.; Frank, K.A.; Mason, D.M.; Ulanowicz, R.E.; Taylor, W.W. Compartments Revealed in Food-Web Structure. Nature 2003, 426, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Shurin, J.B.; Clasen, J.L.; Greig, H.S.; Kratina, P.; Thompson, P.L. Warming Shifts Top-down and Bottom-up Control of Pond Food Web Structure and Function. Phil. Trans. R. Soc. B 2012, 367, 3008–3017. [Google Scholar] [CrossRef] [PubMed]
- Hrbáčke, J.; Dvořakova, M.; Kořínek, V.; Procházkóva, L. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association: With 22 figures on 2 folders. SIL Proc. 1922–2010 1961, 14, 192–195. [Google Scholar] [CrossRef]
- Brooks, J.L.; Dodson, S.I. Predation, Body Size, and Composition of Plankton: The Effect of a Marine Planktivore on Lake Plankton Illustrates Theory of Size, Competition, and Predation. Science 1965, 150, 28–35. [Google Scholar] [CrossRef]
- Confer, J.L.; Applegate, G. Size-Selective Predation by Zooplankton. Am. Midl. Nat. 1979, 102, 378. [Google Scholar] [CrossRef]
- Hall, D.J.; Zaret, T.M. Predation and Freshwater Communities. Yale Univ. Press, New Haven, Connecticut. 187 p. Limnol. Oceanogr. 1982, 27, 391–393. [Google Scholar] [CrossRef]
- Pociecha, A.; Bielańska-Grajner, I.; Kuciel, H.; Wojtal, A.Z. Is Zooplankton an Indicator of the Water Trophic Level in Dam Reservoirs? Oceanol. Hydrobiol. Stud. 2018, 47, 288–295. [Google Scholar] [CrossRef]
- Liu, B.; Wu, J.; Hu, Y.; Wang, G.; Chen, Y. Seven Years Study of the Seasonal Dynamics of Zooplankton Communities in a Large Subtropical Floodplain Ecosystem: A Test of the PEG Model. IJERPH 2022, 19, 956. [Google Scholar] [CrossRef]
- Lauridsen, T.; Pedersen, L.J.; Jeppesen, E.; Sønergaard, M. The Importance of Macrophyte Bed Size for Cladoceran Composition and Horizontal Migration in a Shallow Lake. J. Plankton Res. 1996, 18, 2283–2294. [Google Scholar] [CrossRef] [Green Version]
- Wilk-Woźniak, E.; Walusiak, E.; Burchardt, L.; Cerbin, S.; Chmura, D.; Gąbka, M.; Glińska-Lewczuk, K.; Gołdyn, R.; Grabowska, M.; Karpowicz, M.; et al. Effects of the Environs of Waterbodies on Aquatic Plants in Oxbow Lakes (Habitat 3150). Ecol. Indic. 2019, 98, 736–742. [Google Scholar] [CrossRef]
- Barker, T.; Irfanullah, H.M.; Moss, B. Micro-Scale Structure in the Chemistry and Biology of a Shallow Lake: Micro-Scale Patchiness. Freshw. Biol. 2010, 55, 1145–1163. [Google Scholar] [CrossRef]
- Grigorszky, I.; Nagy, S.; Krienitz, L.; Kiss, K.T.; Hamvas, M.M.; Tóth, A.; Borics, G.; Máthé, C.; Kiss, B.; Borbély, G.; et al. Seasonal Succession of Phytoplankton in a Small Oligotrophic Oxbow and Some Consideration to the PEG Model. SIL Proc. 1922–2010 2000, 27, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Korhola, A.; Rautio, M. Cladocera and Other Branchiopod Crustaceans. In Tracking Environmental Change Using Lake Sediments; Smol, J.P., Birks, H.J.B., Last, W.M., Eds.; Developments in Paleoenvironmental Research; Springer: Dordrecht, The Netherlands, 2001; Volume 4, pp. 5–41. ISBN 978-90-481-6034-1. [Google Scholar]
- Frey, D.G. Cladocera Analysis. In Handbook of Holocene Palaoecology and Palaeohydrology; Wiley: Chuchester, UK, 1986; pp. 667–692. ISBN 0-471-90691-3. [Google Scholar]
- Korhola, A.; Olander, H.; Blom, T. Cladoceran and Chironomid Assemblages as Qualitive Indicators of Water Depth in Subarctic Fennoscandian Lakes. J. Paleolimnol. 2000, 24, 43–54. [Google Scholar] [CrossRef]
- Kienast, F.; Wetterich, S.; Kuzmina, S.; Schirrmeister, L.; Andreev, A.A.; Tarasov, P.; Nazarova, L.; Kossler, A.; Frolova, L.; Kunitsky, V.V. Paleontological Records Indicate the Occurrence of Open Woodlands in a Dry Inland Climate at the Present-Day Arctic Coast in Western Beringia during the Last Interglacial. Quat. Sci. Rev. 2011, 30, 2134–2159. [Google Scholar] [CrossRef] [Green Version]
- Davidson, T.A.; Sayer, C.D.; Perrow, M.R.; Bramm, M.; Jeppesen, E. Are the Controls of Species Composition Similar for Contemporary and Sub-Fossil Cladoceran Assemblages? A Study of 39 Shallow Lakes of Contrasting Trophic Status. J. Paleolimnol. 2007, 38, 117–134. [Google Scholar] [CrossRef]
- Liordos, V.; Kontsiotis, V.J. Identifying Important Habitats for Waterbird Conservation at a Greek Regional Nature Park. Avian. Res. 2020, 11, 39. [Google Scholar] [CrossRef]
- Babcsányi, I.; Tamás, M.; Szatmári, J.; Hambek-Oláh, B.; Farsang, A. Assessing the Impacts of the Main River and Anthropogenic Use on the Degree of Metal Contamination of Oxbow Lake Sediments (Tisza River Valley, Hungary). J. Soils Sediments 2020, 20, 1662–1675. [Google Scholar] [CrossRef] [Green Version]
- Dévai, G.; Miskolci, M.; Jakab, T. Habitat Diversity of the Nagy-Morotva Based on Dragonfly Fauna. In Proceedings of the Presented at the Hungarian Hydrological Society, XXXIV. National Wandering Assembly, Section 8: Protection of Wetlands, Debrecen, Hungary, 6–8 July 2016. [Google Scholar]
- Schindler, D.W. Two Useful Devices for Vertical Plankton and Water Sampling. J. Fish. Res. Board Can. 1969, 26, 1948–1955. [Google Scholar] [CrossRef]
- Glew, J.R. Miniature Gravity Corer for Recovering Short Sediment Cores. J. Paleolimnol. 1991, 5, 285–287. [Google Scholar] [CrossRef]
- Német, J. Methods of Biological Water Qualification; Institute of Environmental Management, Environmental Protection Information Service: Budapest, Hungary, 1998. [Google Scholar]
- Dean, W.E., Jr. Determination of Carbonate and Organic Matter in Calcareous Sediments and Sedimentary Rocks by Loss on Ignition: Comparison with Other Methods. SEPM JSR 1974, 44, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Frey, D.G. The Taxonomy and Biogeography of the Cladocera. Hydrobiologia 1987, 145, 5–17. [Google Scholar] [CrossRef]
- Gulyás, P.; Forró, L. Az Ágascsápú Rákok (Cladocera) Kishatározója; Környezetgazdálkodási Intézet: Budapest, Hungary, 1999; ISBN 978-963-602-743-8. [Google Scholar]
- Szeroczyńska, K.; Sarmaja-Korjonen, K. Atlas of Subfossil Cladocera from Central and Northern Europe; Friends of the Lower Vistula Society: Świecie, Poland, 2007; ISBN 978-83-924919-6-5. [Google Scholar]
- Błedzki, L.A.; Rybak, J.I. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis, 1st ed.; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-29871-9. [Google Scholar]
- Hammer, Ø.; Harper, A.T.D.; Ryan, D.P. PAST: Paleontological Statistic Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Oksanen, J.; Blanchet, M.; Friendly, R.; Legendre, P.; McGlinn, D.; Minchín, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; et al. Community Ecology Package: “Vegan” Package; R Development Core Team: Vienna, Austria, 2017. [Google Scholar]
- Rodriguez-Martinez, A.; Posma, J.M.; Ayala, R.; Neves, A.L.; Anwar, M.; Petretto, E.; Emanueli, C.; Gauguier, D.; Nicholson, J.K.; Dumas, M.-E. MWASTools: An R/Bioconductor Package for Metabolome-Wide Association Studies. Bioinformatics 2018, 34, 890–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, D.G. The Ecological Significance of Cladoceran Remains in Lake Sediments. Ecology 1960, 41, 684–699. [Google Scholar] [CrossRef]
- Amoros, C.; Jacquet, C. The Dead-Arm Evolution of River Systems: A Comparison between the Information Provided by Living Copepoda and Cladocera Populations and by Bosminidae and Chydroidae Remains. Hydrobiologia 1987, 145, 333–341. [Google Scholar] [CrossRef]
- Brodersen, K.P.; Whiteside, M.C.; Lindegaard, C. Reconstruction of Trophic State in Danish Lakes Using Subfossil Chydorid (Cladocera) Assemblages. Can. J. Fish. Aquat. Sci. 1998, 55, 1093–1103. [Google Scholar] [CrossRef]
- Korponai, J.; Braun, M.; Forró, L.; Gyulai, I.; Kövér, C.; Nédli, J.; Urák, I.; Buczkó, K. Taxonomic, Functional and Phylogenetic Diversity: How Subfossil Cladocerans Mirror Contemporary Community for Ecosystem Functioning: A Comparative Study in Two Oxbows. Limnetica 2019, 38, 431–456. [Google Scholar] [CrossRef]
- Sayer, C.D.; Burgess, A.; Kari, K.; Davidson, T.A.; Peglar, S.; Yang, H.; Rose, N. Long-Term Dynamics of Submerged Macrophytes and Algae in a Small and Shallow, Eutrophic Lake: Implications for the Stability of Macrophyte-Dominance. Freshw. Biol. 2010, 55, 565–583. [Google Scholar] [CrossRef]
- Jeppesen, E.; Jensen, J.P.; Søndergaard, M.; Lauridsen, T.; Pedersen, L.J.; Jensen, L. Top-down Control in Freshwater Lakes: The Role of Nutrient State, Submerged Macrophytes and Water Depth. Hydrobiologia 1997, 342, 151–164. [Google Scholar] [CrossRef]
- Gannon, J.E.; Stemberger, R.S. Zooplankton (Especially Crustaceans and Rotifers) as Indicators of Water Quality. Trans. Am. Microsc. Soc. 1978, 97, 16. [Google Scholar] [CrossRef]
- Kattel, G.R.; Battarbee, R.W.; Mackay, A.; Birks, H.J.B. Are Cladoceran Fossils in Lake Sediment Samples a Biased Reflection of the Communities from Which They Are Derived? J. Paleolimnol. 2007, 38, 157–181. [Google Scholar] [CrossRef]
- Davidson, T.A.; Sayer, C.D.; Perrow, M.; Bramm, M.; Jeppesen, E. The Simultaneous Inference of Zooplanktivorous Fish and Macrophyte Density from Sub-Fossil Cladoceran Assemblages: A Multivariate Regression Tree Approach. Freshw. Biol. 2010, 55, 546–564. [Google Scholar] [CrossRef]
- Scheffer, M. Alternative Attractors of Shallow Lakes. Sci. World, J. 2001, 1, 254–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevalainen, L. Evaluation of Microcrustacean (Cladocera, Chydoridae) Biodiversity Based on Sweep Net and Surface Sediment Samples. Écoscience 2010, 17, 356–364. [Google Scholar] [CrossRef]
- Çakıroğlu, A.İ.; Tavşanoğlu, Ü.N.; Levi, E.E.; Davidson, T.A.; Bucak, T.; Özen, A.; Akyıldız, G.K.; Jeppesen, E.; Beklioğlu, M. Relatedness between Contemporary and Subfossil Cladoceran Assemblages in Turkish Lakes. J. Paleolimnol. 2014, 52, 367–383. [Google Scholar] [CrossRef]
- Jeppesen, E.; Peder Jensen, J.; SØndergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic Structure, Species Richness and Biodiversity in Danish Lakes: Changes along a Phosphorus Gradient: A Detailed Study of Danish Lakes along a Phosphorus Gradient. Freshw. Biol. 2000, 45, 201–218. [Google Scholar] [CrossRef]
- Tavşanoğlu, Ü.N.; Šorf, M.; Stefanidis, K.; Brucet, S.; Türkan, S.; Agasild, H.; Baho, D.L.; Scharfenberger, U.; Hejzlar, J.; Papastergiadou, E.; et al. Effects of Nutrient and Water Level Changes on the Composition and Size Structure of Zooplankton Communities in Shallow Lakes under Different Climatic Conditions: A Pan-European Mesocosm Experiment. Aquat. Ecol. 2017, 51, 257–273. [Google Scholar] [CrossRef]
- Sadeq, S.A.; Beckerman, A.P. The Chronic Effects of Copper and Cadmium on Life History Traits Across Cladocera Species: A Meta-Analysis. Arch. Environ. Contam. Toxicol. 2019, 76, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Vad, C.F.; Horváth, Z.; Kiss, K.T.; Ács, É. Microcrustacean (Cladocera, Copepoda) Communities in Artificial Lakes in the Region of the North Hungarian Mountains, with Special Reference to the Advantive Species. Acta. Zool. Hung. 2012, 58, 47–61. [Google Scholar]
- Tóth, A.; Horváth, Z.; Vad, C.F.; Zsuga, K.; Nagy, S.A.; Boros, E. Zooplankton of the European Soda Pans: Fauna and Conservation of a Unique Habitat Type: Zooplankton of Soda Pans. Int. Rev. Hydrobiol. 2014, 99, 255–276. [Google Scholar] [CrossRef]
- Davidson, T.A.; Reid, M.A.; Sayer, C.D.; Chilcott, S. Palaeolimnological Records of Shallow Lake Biodiversity Change: Exploring the Merits of Single versus Multi-Proxy Approaches. J. Paleolimnol. 2013, 49, 431–446. [Google Scholar] [CrossRef]
- Christoffersen, K.; Riemann, B.; Klysner, A.; Søndergaard, M. Potential Role of Fish Predation and Natural Populations of Zooplankton in Structuring a Plankton Community in Eutrophic Lake Water. Limnol. Oceanogr. 1993, 38, 561–573. [Google Scholar] [CrossRef]
Pairs | F.Model | R2 | p-Value | padjusted | Sig |
---|---|---|---|---|---|
FS-1 vs. NS | 0.7835624 | 0.0568476 | 0.607 | 0.6070 | n.s. |
FS-1 vs. FS-2 | 3.6415464 | 0.2669453 | 0.007 | 0.0105 | |
NS vs. FS-2 | 3.7957823 | 0.2259962 | 0.007 | 0.0105 |
Sites | Sampling Points | Taxa | Individuals | Dominance | Shannon | |
---|---|---|---|---|---|---|
Ind. L−1 | Ind. cm−3 | |||||
Fishing site-1 | C_RAK1 | 16 | 610 | 0.1973 | 2.07 | |
S_RAK1 | 19 | 8417 | 0.2077 | 2.13 | ||
C_RAK2 | 11 | 2975 | 0.4691 | 1.22 | ||
S_RAK2 | 18 | 11,000 | 0.3627 | 1.63 | ||
C_RAK3 | 8 | 2825 | 0.5990 | 0.89 | ||
S_RAK3 | 10 | 13,500 | 0.4489 | 1.22 | ||
C_RAK4 | 12 | 2950 | 0.5402 | 1.09 | ||
S_RAK4 | 15 | 8333 | 0.3498 | 1.57 | ||
C_RAK5 | 9 | 6201 | 0.6578 | 0.67 | ||
S_RAK5 | 16 | 19,750 | 0.3878 | 1.46 | ||
C_RAK6 | 10 | 4800 | 0.5352 | 1.02 | ||
S_RAK6 | 19 | 10,833 | 0.2419 | 2.05 | ||
Natural site | C_RAK7 | 12 | 2525 | 0.4061 | 1.41 | |
S_RAK7 | 20 | 15,375 | 0.1866 | 2.22 | ||
C_RAK8 | 7 | 3450 | 0.5806 | 0.86 | ||
S_RAK8 | 11 | 4950 | 0.2374 | 1.75 | ||
C_RAK9 | 6 | 3400 | 0.6620 | 0.63 | ||
S_RAK9 | 20 | 9750 | 0.1936 | 2.14 | ||
C_RAK10 | 11 | 3125 | 0.5668 | 1.05 | ||
S_RAK10 | 19 | 4950 | 0.1709 | 2.27 | ||
C_RAK11 | 13 | 3500 | 0.4184 | 1.45 | ||
S_RAK11 | 20 | 8700 | 0.1711 | 2.25 | ||
C_RAK12 | 9 | 3000 | 0.4678 | 1.23 | ||
S_RAK12 | 17 | 7275 | 0.1923 | 2.07 | ||
C_RAK13 | 9 | 2450 | 0.4511 | 1.27 | ||
S_RAK13 | 14 | 5200 | 0.1916 | 1.98 | ||
C_RAK14 | 8 | 1125 | 0.4084 | 1.29 | ||
S_RAK14 | 20 | 8475 | 0.3039 | 1.85 | ||
C_RAK15 | 4 | 1300 | 0.5806 | 0.76 | ||
S_RAK15 | 16 | 4850 | 0.2186 | 2.00 | ||
Fishing site-2 | C_RAK16 | 8 | 8800 | 0.6408 | 0.74 | |
S_RAK16 | 24 | 6750 | 0.1101 | 2.63 | ||
C_RAK17 | 7 | 15,450 | 0.5411 | 0.75 | ||
S_RAK17 | 16 | 4500 | 0.3277 | 1.71 | ||
C_RAK18 | 11 | 14,950 | 0.5566 | 0.83 | ||
S_RAK18 | 27 | 6250 | 0.2026 | 2.33 | ||
C_RAK19 | 9 | 21,500 | 0.5512 | 0.74 | ||
S_RAK19 | 22 | 4750 | 0.1745 | 2.30 | ||
C_RAK20 | 8 | 11,950 | 0.5407 | 0.80 | ||
S_RAK20 | 18 | 5750 | 0.2599 | 1.99 | ||
C_RAK21 | 8 | 14,900 | 0.5607 | 0.78 | ||
S_RAK21 | 23 | 7425 | 0.2456 | 2.19 |
Pairs | F.Model | R2 | p-Value | padjusted | Sig |
---|---|---|---|---|---|
FS-1 vs. NS | 4.671560 | 0.2643547 | 0.003 | 0.009 | * |
FS-1 vs. FS-2 | 2.978583 | 0.2294999 | 0.012 | 0.015 | |
NS vs. FS-2 | 1.750745 | 0.1186886 | 0.015 | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumurtogoo, U.; Figler, A.; Korponai, J.; Sajtos, Z.; Grigorszky, I.; Berta, C.; Gyulai, I. Density and Diversity Differences of Contemporary and Subfossil Cladocera Assemblages: A Case Study in an Oxbow Lake. Water 2022, 14, 2149. https://doi.org/10.3390/w14142149
Tumurtogoo U, Figler A, Korponai J, Sajtos Z, Grigorszky I, Berta C, Gyulai I. Density and Diversity Differences of Contemporary and Subfossil Cladocera Assemblages: A Case Study in an Oxbow Lake. Water. 2022; 14(14):2149. https://doi.org/10.3390/w14142149
Chicago/Turabian StyleTumurtogoo, Uyanga, Aida Figler, János Korponai, Zsófi Sajtos, István Grigorszky, Csaba Berta, and István Gyulai. 2022. "Density and Diversity Differences of Contemporary and Subfossil Cladocera Assemblages: A Case Study in an Oxbow Lake" Water 14, no. 14: 2149. https://doi.org/10.3390/w14142149
APA StyleTumurtogoo, U., Figler, A., Korponai, J., Sajtos, Z., Grigorszky, I., Berta, C., & Gyulai, I. (2022). Density and Diversity Differences of Contemporary and Subfossil Cladocera Assemblages: A Case Study in an Oxbow Lake. Water, 14(14), 2149. https://doi.org/10.3390/w14142149