Evaluation of Snow and Streamflows Using Noah-MP and WRF-Hydro Models in Aroostook River Basin, Maine
Abstract
:1. Introduction
2. Study Area
3. Methods and Data
3.1. National Water Model, WRF-Hydro, and Noah-MP Model
3.2. Meteorological Forcing
3.3. Single-Column Experiment
3.4. Comparing Simulated with Observed Streamflows
3.5. Fractional Snowcover Area from MODIS
4. Results
4.1. Single-Column Experiment
4.1.1. Comparison between the Simulations
- Snow only, when T2m ≤ 273.66 K
- Rain only, when T2m ≥ 275.66 K
- Mix of rain and snow, when T2m is between 273.66–275.66 K with,
- snow fraction = 1 − (− 54.632 + 0.2 × T2m) at T2m ≤ 275.16 K
- snow fraction = 0.6 at T2m > 275.16 K
4.1.2. Comparison between Simulated and Observed SWE
4.2. Streamflow Prediction
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawson, N.; Broxton, P.; Zeng, X. Evaluation of Remotely Sensed Snow Water Equivalent and Snow Cover Extent over the Contiguous United States. J. Hydrometeorol. 2018, 19, 1777–1791. [Google Scholar] [CrossRef]
- Tomasi, E.; Giovannini, L.; Zardi, D.; de Franceschi, M. Optimization of Noah and Noah_MP WRF Land Surface Schemes in Snow-Melting Conditions over Complex Terrain. Mon. Weather Rev. 2017, 145, 4727–4745. [Google Scholar] [CrossRef]
- Hall, A. The Role of Surface Albedo Feedback in Climate. J. Clim. 2004, 17, 1550–1568. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative Forcing and Albedo Feedback from the Northern Hemisphere Cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Slater, A.G. The Contribution of Snow Condition Trends Trends to Future Ground Climate. Clim. Dyn. 2010, 34, 969–981. [Google Scholar] [CrossRef] [Green Version]
- Dudley, R.W.; Hodgkins, G.A.; McHale, M.R.; Kolian, M.J.; Renard, B. Trends in Snowmelt-Related Streamflow Timing in the Conterminous United States. J. Hydrol. 2017, 547, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Musselman, K.N.; Clark, M.P.; Liu, C.; Ikeda, K.; Rasmussen, R. Slower Snowmelt in a Warmer World. Nat. Clim. Chang. 2017, 7, 214–219. [Google Scholar] [CrossRef]
- Clow, D.W. Changes in the Timing of Snowmelt and Streamflow in Colorado: A Response to Recent Warming. J. Clim. 2010, 23, 2293–2306. [Google Scholar] [CrossRef]
- Barlage, M.; Chen, F.; Tewari, M.; Ikeda, K.; Gochis, D.; Dudhia, J.; Rasmussen, R.; Livneh, B.; Ek, M.; Mitchell, K. Noah Land Surface Model Modifications to Improve Snowpack Prediction in the Colorado Rocky Mountains. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Wayand, N.E.; Hamlet, A.F.; Hughes, M.; Feld, S.I.; Lundquist, J.D. Intercomparison of Meteorological Forcing Data from Empirical and Mesoscale Model Sources in the North Fork American River Basin in Northern Sierra Nevada, California. J. Hydrometeorol. 2013, 14, 677–699. [Google Scholar] [CrossRef]
- Viterbo, F.; Mahoney, K.; Read, L.; Salas, F.; Bates, B.; Elliott, J.; Cosgrove, B.; Dugger, A.; Gochis, D.; Cifelli, R. A Multiscale, Hydrometeorological Forecast Evaluation of National Water Model Forecasts of the May 2018 Ellicott City, Maryland, Flood. J. Hydrometeorol. 2020, 21, 475–499. [Google Scholar] [CrossRef]
- Lahmers, T.M.; Hazenberg, P.; Gupta, H.; Castro, C.; Gochis, D.; Dugger, A.; Yates, D.; Read, L.; Karsten, L.; Wang, Y.-H. Evaluation of NOAA National Water Model Parameter Calibration in Semi-Arid Environments Prone to Channel Infiltration. J. Hydrometeorol. 2021, 22, 2939–2969. [Google Scholar] [CrossRef]
- Verri, G.; Pinardi, N.; Gochis, D.; Tribbia, J.; Navarra, A.; Coppini, G.; Vukicevic, T. A Meteo-Hydrological Modelling System for the Reconstruction of River Runoff: The Case of the Ofanto River Catchment. Nat. Hazards Earth Syst. Sci. 2017, 17, 1741–1761. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Salas, F.R.; Somos-Valenzuela, M.A.; Dugger, A.; Maidment, D.R.; Gochis, D.J.; David, C.H.; Yu, W.; Ding, D.; Clark, E.P.; Noman, N. Towards Real-Time Continental Scale Streamflow Simulation in Continuous and Discrete Space. J. Am. Water Resour. Assoc. 2018, 54, 7–27. [Google Scholar] [CrossRef]
- Barnett, T.P.; Pierce, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A.; et al. Human-Induced Changes in the Hydrology of the Western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [Green Version]
- Holtzman, N.M.; Pavelsky, T.M.; Cohen, J.S.; Wrzesien, M.L.; Herman, J.D. Tailoring WRF and Noah-MP to Improve Process Representation of Sierra Nevada Runoff: Diagnostic Evaluation and Applications. J. Adv. Modeling Earth Syst. 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Broxton, P.; Dawson, N. Snowpack Change From 1982 to 2016 Over Conterminous United States. Geophys. Res. Lett. 2018, 45, 12940–12947. [Google Scholar] [CrossRef]
- Kampf, S.K.; Lefsky, M.A. Transition of Dominant Peak Flow Source from Snowmelt to Rainfall along the Colorado Front Range: Historical Patterns, Trends, and Lessons from the 2013 Colorado Front Range Floods. Water Resour. Res. 2016, 52, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Garousi-Nejad, I.; Tarboton, D.G. A Comparison of National Water Model Retrospective Analysis Snow Outputs at Snow Telemetry Sites across the Western United States. Hydrol. Processes 2022, 36, e14469. [Google Scholar] [CrossRef]
- Somos-Valenzuela, M.A.; Palmer, R.N. Use of WRF-Hydro over the Northeast of the US to Estimate Water Budget Tendencies in Small Watersheds. Water 2018, 10, 1709. [Google Scholar] [CrossRef] [Green Version]
- Chezik, K.A.; Anderson, S.C.; Moore, J.W. River Networks Dampen Long-Term Hydrological Signals of Climate Change. Geophys. Res. Lett. 2017, 44, 7256–7264. [Google Scholar] [CrossRef]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of Subpixel Snow Covered Area, Grain Size, and Albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Bennett, K.E.; Cherry, J.E.; Balk, B.; Lindsey, S. Using MODIS Estimates of Fractional Snow Cover Area to Improve Streamflow Forecasts in Interior Alaska. Hydrol. Earth Syst. Sci. 2019, 23, 2439–2459. [Google Scholar] [CrossRef] [Green Version]
- Dong, C. Remote Sensing, Hydrological Modeling and in Situ Observations in Snow Cover Research: A Review. J. Hydrol. 2018, 561, 573–583. [Google Scholar] [CrossRef]
- Bales, R.C.; Molotch, N.P.; Painter, T.H.; Dettinger, M.D.; Rice, R.; Dozier, J. Mountain Hydrology of the Western United States. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Dozier, J.; Painter, T.H.; Rittger, K.; Frew, J.E. Time-Space Continuity of Daily Maps of Fractional Snow Cover and Albedo from MODIS. Adv. Water Resour. 2008, 31, 1515–1526. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. MODIS/Terra CGF Snow Cover Daily L3 Global 500 m SIN Grid, Version 61 USER GUIDE; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. Model Description and Evaluation with Local-Scale Measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- NLCD 2016 Land Cover (CONUS). Available online: https://www.mrlc.gov/data/nlcd-2016-land-cover-conus (accessed on 23 April 2021).
- Gochis, D.J.; Barlage, M.; Cabell, R.; Casali, M.; Dugger, A.; Fitzgerald, K.; Mcallister, M.; Mccreight, J.; Rafieeinasab, A.; Read, L.; et al. The WRF-Hydro® Modeling System Description, (Version 5.1.1); NCAR Technical Note: Boulder, CO, USA, 2020. [Google Scholar]
- Yang, Z.L.; Niu, G.Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 2. Evaluation over Global River Basins. J. Geophys. Res. Atmos. 2011, 116, 1–16. [Google Scholar] [CrossRef]
- Gochis, D.J.; Barlage, M.; Cabell, R.; Casali, M.; Dugger, A.; Fanfarillo, A.; FitzGerald, K.; McAllister, M.; McCreight, J.; RafieeiNasab, A.; et al. WRF-Hydro Model Code. Available online: https://zenodo.org/record/3625238#.YsNpaHbMK38 or https://github.com/NCAR/wrf_hydro_nwm_public/tree/v5.1.1 (accessed on 14 March 2020).
- Mitchell, K.E.; Lohmann, D.; Houser, P.R.; Wood, E.F.; Schaake, J.C.; Robock, A.; Cosgrove, B.A.; Sheffield, J.; Duan, Q.; Luo, L.; et al. The Multi-Institution North American Land Data Assimilation System (NLDAS): Utilizing Multiple GCIP Products and Partners in a Continental Distributed Hydrological Modeling System. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-Scale Water and Energy Flux Analysis and Validation for the North American Land Data Assimilation System Project Phase 2 (NLDAS-2): 1. Intercomparison and Application of Model Products. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- CUNY Snow Analysis and Field Experiment. Available online: https://www.star.nesdis.noaa.gov/smcd/emb/snow/caribou/microwave.html (accessed on 31 August 2019).
- Nadolski, V.L. Automated Surface Observing System User’s Guide; National Weather Service: Silver Spring, MD, USA, 1998.
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Riggs, R.; Hall, D.; Roman, M.O. VIIRS Snow Cover Algorithm Theoretical Basis Document (ATBD), Version 1.0; Nasa Goddard Space Flight Center: Greenbelt, MD, USA, 2015.
- Salomonson, V.V.; Appel, I. Development of the Aqua MODIS NDSI Fractional Snow Cover Algorithm and Validation Results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1747–1756. [Google Scholar] [CrossRef]
- Raleigh, M.S.; Rittger, K.; Moore, C.E.; Henn, B.; Lutz, J.A.; Lundquist, J.D. Ground-Based Testing of MODIS Fractional Snow Cover in Subalpine Meadows and Forests of the Sierra Nevada. Remote Sens. Environ. 2013, 128, 44–57. [Google Scholar] [CrossRef]
- Heilig, A.; Mitterer, C.; Schmid, L.; Wever, N.; Schweizer, J.; Marshall, H.P.; Eisen, O. Seasonal and Diurnal Cycles of Liquid Water in Snow—Measurements and Modeling. J. Geophys. Res. Earth Surf. 2015, 120, 2139–2154. [Google Scholar] [CrossRef] [Green Version]
- Toure, A.M.; Reichle, R.H.; Forman, B.A.; Getirana, A.; de Lannoy, G.J.M. Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model. Remote Sens. 2018, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Aas, K.S.; Gisnås, K.; Westermann, S.; Berntsen, T.K. A Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface-Atmosphere Models. J. Hydrometeorol. 2017, 18, 49–63. [Google Scholar] [CrossRef]
- Clark, M.P.; Hendrikx, J.; Slater, A.G.; Kavetski, D.; Anderson, B.; Cullen, N.J.; Kerr, T.; Örn Hreinsson, E.; Woods, R.A. Representing Spatial Variability of Snow Water Equivalent in Hydrologic and Land-Surface Models: A Review. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.Y.; Yang, Z.L. An Observation-Based Formulation of Snow Cover Fraction and Its Evaluation over Large North American River Basins. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Currier, W.R.; Thorson, T.; Lundquist, J.D. Independent Evaluation of Frozen Precipitation from WRF and PRISM in the Olympic Mountains. J. Hydrometeorol. 2017, 18, 2681–2703. [Google Scholar] [CrossRef]
- Wang, Y.H.; Broxton, P.; Fang, Y.; Behrangi, A.; Barlage, M.; Zeng, X.; Niu, G.Y. A Wet-Bulb Temperature-Based Rain-Snow Partitioning Scheme Improves Snowpack Prediction Over the Drier Western United States. Geophys. Res. Lett. 2019, 46, 13825–13835. [Google Scholar] [CrossRef]
- Wrzesien, M.L.; Pavelsky, T.M.; Kapnick, S.B.; Durand, M.T.; Painter, T.H. Evaluation of Snow Cover Fraction for Regional Climate Simulations in the Sierra Nevada. Int. J. Climatol. 2015, 35, 2472–2484. [Google Scholar] [CrossRef]
- Marshall, A.M.; Abatzoglou, J.T.; Link, T.E.; Tennant, C.J. Projected Changes in Interannual Variability of Peak Snowpack Amount and Timing in the Western United States. Geophys. Res. Lett. 2019, 46, 8882–8892. [Google Scholar] [CrossRef] [Green Version]
Index | Hardwood Brook | Madawaska | Masardis | Washburn |
---|---|---|---|---|
Area (km2) | 15 | 604 | 2338 | 4303 |
Elevation (m) | 146–214 | 123–360 | 161–746 | 133–746 |
Percent Slope | 0–35 | 0–73 | 0–189 | 0–189 |
Physics | Model Selected Option |
---|---|
Dynamic Vegetation Option | 4—Table LAI |
Canopy Stomatal Resistance Option | 1—Ball-Berry |
Soil Moisture Factor for Stomatal Resistance | 1—Noah |
Runoff and Groundwater | 3—Original surface and sub-surface runoff (free drainage) |
Surface Layer Drag Coefficient | 1—M-O |
Frozen Soil Permeability | 1—no iteration, Niu and Yang, 2006, JHM |
Supercooled Liquid Water | 1—linear effects, more permeable, Niu and Yang, 2006, JHM |
Radiative Transfer | 3—two-stream applied to vegetated fraction (gap = 1-FVEG) |
Snow Surface Albedo | 1—BATS |
Precipitation Partitioning | 1—Jordan 1991 |
Lower Boundary Condition of Soil Temperature | 2—Noah |
Snow/Soil Temperature Time Scheme | 3—semi-implicit with FSNO for TS |
Surface Resistance | 4—separate non-snow and snow |
Glacier Treatment | 2—Noah |
Period | Forcing | Simulation Outputs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
In. SW (W/m2) | In. LW (W/m2) | T2m (K) | Wind (m/s) | RH (%) | Abs. SW (W/m2) | Net LW (W/m2) | Trad (K) | Alb-edo | SWE (mm) | SD (m) | |
Accumu-lation | +23.9 | −7 | −0.7 | +0.3 | +21 | +5.6 | +5.4 | −0.2 | +0.005 | +52 | +0.2 |
Melt | +35.2 | −9.4 | −0.4 | +0.2 | +12 | +59.4 | +5.3 | −0.1 | +0.03 |
NLDAS-2 | Station | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WY | Peak SWE (mm-dd hh) | Sim. Peak SWE (mm) | Total Snow (mm) | Total Rain (mm) | Total PRCP (mm) | % Snow | % Rain | Peak SWE (mm-dd hh) | Sim. Peak SWE (mm) | Total Snow (mm) | Total Rain (mm) | Total PRCP (mm) | % Snow | % Rain |
2014 | 04-06 09 | 233 | 216 | 13.2 | 229 | 94.2 | 5.8 | 04-06 07 | 187 | 202 | 52.4 | 254 | 79.4 | 20.6 |
2015 | 03-23 09 | 234 | 232 | 14.0 | 246 | 94.3 | 5.7 | 04-11 00 | 208 | 274 | 40.4 | 315 | 87.2 | 12.8 |
2016 | 03-29 14 | 335 | 327 | 44.2 | 371 | 88 | 12 | 03-29 14 | 250 | 286 | 67 | 353 | 81 | 19 |
2017 | 03-29 03 | 316 | 292 | 13.5 | 306 | 95.6 | 4.4 | 03-29 02 | 280 | 286 | 38 | 325 | 88 | 12 |
2018 | 04-07 21 | 300 | 336 | 29.4 | 370 | 92 | 8 | 03-15 20 | 251 | 287 | 38 | 323 | 88.2 | 11.8 |
2019 | 03-23 12 | 373 | 316 | 18 | 334 | 94.6 | 5.4 | 03-22 23 | 305 | 282 | 59 | 342 | 82.7 | 17.3 |
Index | Hardwood Brook | Madawaska | Masardis | Washburn |
---|---|---|---|---|
NSE | 0.40 | 0.42 | 0.90 | 0.90 |
PBIAS% | −9.02 | 10.21 | 6.80 | 3.11 |
RSR | 0.77 | 0.75 | 0.30 | 0.30 |
KGE | 0.63 | 0.33 | 0.86 | 0.87 |
r | 0.81 | 0.74 | 0.96 | 0.96 |
Alpha | 1.3 | 0.39 | 0.89 | 0.89 |
Beta | 1.1 | 0.9 | 0.93 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sthapit, E.; Lakhankar, T.; Hughes, M.; Khanbilvardi, R.; Cifelli, R.; Mahoney, K.; Currier, W.R.; Viterbo, F.; Rafieeinasab, A. Evaluation of Snow and Streamflows Using Noah-MP and WRF-Hydro Models in Aroostook River Basin, Maine. Water 2022, 14, 2145. https://doi.org/10.3390/w14142145
Sthapit E, Lakhankar T, Hughes M, Khanbilvardi R, Cifelli R, Mahoney K, Currier WR, Viterbo F, Rafieeinasab A. Evaluation of Snow and Streamflows Using Noah-MP and WRF-Hydro Models in Aroostook River Basin, Maine. Water. 2022; 14(14):2145. https://doi.org/10.3390/w14142145
Chicago/Turabian StyleSthapit, Engela, Tarendra Lakhankar, Mimi Hughes, Reza Khanbilvardi, Robert Cifelli, Kelly Mahoney, William Ryan Currier, Francesca Viterbo, and Arezoo Rafieeinasab. 2022. "Evaluation of Snow and Streamflows Using Noah-MP and WRF-Hydro Models in Aroostook River Basin, Maine" Water 14, no. 14: 2145. https://doi.org/10.3390/w14142145
APA StyleSthapit, E., Lakhankar, T., Hughes, M., Khanbilvardi, R., Cifelli, R., Mahoney, K., Currier, W. R., Viterbo, F., & Rafieeinasab, A. (2022). Evaluation of Snow and Streamflows Using Noah-MP and WRF-Hydro Models in Aroostook River Basin, Maine. Water, 14(14), 2145. https://doi.org/10.3390/w14142145