Prediction of Glacially Derived Runoff in the Muzati River Watershed Based on the PSO-LSTM Model
Abstract
:1. Introduction
2. Study Area Overview and Data Sources
2.1. Study Area
2.2. Data Sources and Processing
3. Materials and Methods
3.1. Statistical Analysis
3.2. LSTM Hydrological Prediction Model Optimized by PSO Algorithm
3.2.1. PSO Algorithm
3.2.2. LSTM Networks
- (1)
- The gate layer ft removes information on the (t − 1) moment cell state:
- (2)
- The input gate INt, also known as the update gate layer, consists of two parts, it and Ĉt, which are respectively given by:
- (3)
- The output gate layer Ot calculates the output values of the cell state Ct and the hidden layer state ht as follows:
3.2.3. LSTM Model Optimized by PSO
3.3. Model Validation
4. Results
4.1. Effects of Glacier Discharge and Climatic Factors
4.2. Model Performance Evaluation
4.3. LOSS and RMSE Results in Training Period
5. Discussion
5.1. Responses of Glacier Runoff to Climate Changes
5.2. Prospect of Hydrologic Application of PSO-LSTM and BiLSTM Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Wu, T.; Wang, P.; Li, R.; Xie, C.; Zou, D. Spatial Distribution and Changes of Permafrost on the Qinghai-Tibet Plateau Revealed by Statistical Models during the Period of 1980 to 2010. Sci. Total Environ. 2019, 650, 661–670. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, T.; Kang, S.; Shangguan, D.; Luo, X. Albedo Reduction as an Important Driver for Glacier Melting in Tibetan Plateau and Its Surrounding Areas. Earth-Sci. Rev. 2021, 220, 103735. [Google Scholar] [CrossRef]
- Harrison, W.D. How Do Glaciers Respond to Climate? Perspectives from the Simplest Models. J. Glaciol. 2013, 59, 949–960. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Z.; Wang, F.; Edwards, R. Glacier Shrinkage in the Ebinur Lake Basin, Tien Shan, China, during the Past 40 Years. J. Glaciol. 2014, 60, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Xiong, L.; Tang, G.; Strobl, J.; Xue, K. Spatial–Temporal Variation of Land Use and Land Cover Change in the Glacial Affected Area of the Tianshan Mountains. Catena 2021, 202, 105256. [Google Scholar] [CrossRef]
- Merkle, T.; Chanock, S. Asian Glaciers Are a Reliable Water Source. Nature 2017, 545, 161–162. [Google Scholar]
- Saydi, M.; Tang, G.; Fang, H. Major Controls on Streamflow of the Glacierized Urumqi River Basin in the Arid Region of Northwest China. Water 2020, 12, 3062. [Google Scholar] [CrossRef]
- Kim, Y.; Worrell, E. CO2 Emission Trends in the Cement Industry: An International Comparison. Mitig. Adapt. Strateg. Glob. Chang. 2002, 7, 115–133. [Google Scholar] [CrossRef]
- Nolin, A.W.; Phillippe, J.; Jefferson, A.; Lewis, S.L. Present-Day and Future Contributions of Glacier Runoff to Summertime Flows in a Pacific Northwest Watershed: Implications for Water Resources. Water Resour. Res. 2010, 46, 1–14. [Google Scholar] [CrossRef]
- Baraer, M.; Mark, B.G.; Mckenzie, J.M.; Condom, T.; Bury, J.; Huh, K.I.; Portocarrero, C.; Gómez, J.; Rathay, S. Glacier Recession and Water Resources in Peru’s Cordillera Blanca. J. Glaciol. 2012, 58, 134–150. [Google Scholar] [CrossRef] [Green Version]
- Huss, M. Present and Future Contribution of Glacier Storage Change to Runoff from Macroscale Drainage Basins in Europe. Water Resour. Res. 2011, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, D.; Buttle, J.; Carey, S.K.; van Huijgevoort, M.H.J.; Laudon, H.; Mcnamara, J.P.; Mitchell, C.P.J.; Spence, C.; Gabor, R.S.; Soulsby, C. A Preliminary Assessment of Water Partitioning and Ecohydrological Coupling in Northern Headwaters Using Stable Isotopes and Conceptual Runoff Models. Hydrol. Process. 2015, 29, 5153–5173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hock, R.; Holmgren, B. A Distributed Surface Energy-Balance Model for Complex Topography and Its Application to Storglaciären, Sweden. J. Glaciol. 2005, 51, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Ageta, Y. Effect of Summer Accumulation on Glacier Mass Balance on the Tibetan Plateau Revealed by Mass-Balance Model. J. Glaciol. 2000, 46, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of Glacier Processes for Distributed Hydrological Modeling at Basin Scale with Application to a Watershed in Tianshan Mountains, Northwest China. J. Hydrol. 2013, 477, 72–85. [Google Scholar] [CrossRef]
- Hock, R. Temperature Index Melt Modelling in Mountain Areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Ahmad, S.K.; Hossain, F. A Generic Data-Driven Technique for Forecasting of Reservoir Inflow: Application for Hydropower Maximization. Environ. Model. Softw. 2019, 119, 147–165. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall—Runoff Modelling Using Long Short-Term Memory (LSTM) Networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef] [Green Version]
- Gharabaghi, B.; Bonakdari, H.; Ebtehaj, I. Hybrid Evolutionary Algorithm Based on PSOGA for ANFIS Designing in Prediction of No-Deposition Bed Load Sediment Transport in Sewer Pipe; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 857, ISBN 9783030011765. [Google Scholar]
- Mohammadi, B.; Guan, Y.; Moazenzadeh, R.; Safari, M.J.S. Implementation of Hybrid Particle Swarm Optimization-Differential Evolution Algorithms Coupled with Multi-Layer Perceptron for Suspended Sediment Load Estimation. Catena 2021, 198, 105024. [Google Scholar] [CrossRef]
- Yan, J.; Chen, X.; Yu, Y. A Data Cleaning Framework for Water Quality Based on NLDIW-PSO Based Optimal SVR. In Proceedings of the 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), Santiago, Chile, 3–6 December 2018; pp. 336–341. [Google Scholar] [CrossRef]
- Gambhir, S.; Malik, S.K.; Kumar, Y. PSO-ANN Based Diagnostic Model for the Early Detection of Dengue Disease. New Horiz. Transl. Med. 2017, 4, 1–8. [Google Scholar] [CrossRef]
- Won, Y.M.; Lee, J.H.; Moon, H.T.; Moon, Y. Il Development and Application of an Urban Flood Forecasting and Warning Process to Reduce Urban Flood Damage: A Case Study of Dorim River Basin, Seoul. Water 2022, 14, 187. [Google Scholar] [CrossRef]
- Ghasemlounia, R.; Gharehbaghi, A.; Ahmadi, F.; Saadatnejadgharahassanlou, H. Developing a Novel Framework for Forecasting Groundwater Level Fluctuations Using Bi-Directional Long Short-Term Memory (BiLSTM) Deep Neural Network. Comput. Electron. Agric. 2021, 191, 106568. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Ren, X. Modeling Hourly Soil Temperature Using Deep BiLSTM Neural Network. Algorithms 2020, 13, 173. [Google Scholar] [CrossRef]
- Yan, J.; Chen, X.; Yu, Y.; Zhang, X. Application of a Parallel Particle Swarm Optimization-Long Short Term Memory Model to Improve Water Quality Data. Water 2019, 11, 1317. [Google Scholar] [CrossRef] [Green Version]
- Albo-Salih, H.; Mays, L.W.; Che, D. Application of an Optimization/Simulation Model for the Real-Time Flood Operation of River-Reservoir Systems with One-and Two-Dimensional Unsteady Flow Modeling. Water 2022, 14, 87. [Google Scholar] [CrossRef]
- Arab, M.; Faramarz, M.G.; Hashim, K. Applications of Computational and Statistical Models for Optimizing the Electrochemical Removal of Cephalexin Antibiotic from Water. Water 2022, 14, 344. [Google Scholar] [CrossRef]
- Ji, H.; Chen, Y.; Fang, G.; Li, Z.; Duan, W.; Zhang, Q. Adaptability of Machine Learning Methods and Hydrological Models to Discharge Simulations in Data-Sparse Glaciated Watersheds. J. Arid Land 2021, 13, 549–567. [Google Scholar] [CrossRef]
- Chang, J.; Wang, G.; Guo, L. Simulation of Soil Thermal Dynamics Using an Artificial Neural Network Model for a Permafrost Alpine Meadow on the Qinghai–Tibetan Plateau. Permafr. Periglac. Process. 2019, 30, 195–207. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, C.; Qin, Y.; Chang, Y.; Wang, J. Response of the hydrological processes to climate change in the Muzati River basin with high glacierization, southern slope of the Tianshan Mountains. J. Glaciol. Geocryol. 2020, 42, 1285–1298. [Google Scholar]
- Maihemuti, B.; Simayi, Z.; Alifujiang, Y.; Aishan, T.; Abliz, A.; Aierken, G. Development and Evaluation of the Soil Water Balance Model in an Inland Arid Delta Oasis: Implications for Sustainable Groundwater Resource Management. Glob. Ecol. Conserv. 2021, 25, e01408. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, H.; Liang, C.; Du, L.; Li, H. Spatial and Temporal Variability of Annual and Seasonal Precipitation over the Desert Region of China during 1951–2005. Hydrol. Process. 2010, 24, 2947–2959. [Google Scholar] [CrossRef]
- Saydi, M.; Tang, G.; Qin, Y.; Fang, H.; Chen, X. Evaluation of Phase Discrimination Methods and Snow Fraction Perturbations in Arid Regions of Northwest China. J. Hydrometeorol. 2021, 22, 353–369. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land hourly data from 1981 to present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2019, 10. [Google Scholar] [CrossRef]
- Chang, J.; Wang, G.; Mao, T. Simulation and Prediction of Suprapermafrost Groundwater Level Variation in Response to Climate Change Using a Neural Network Model. J. Hydrol. 2015, 529, 1211–1220. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Erratum: Power of the Mann-Kendall and Spearman’s Rho Tests for Detecting Monotonic Trends in Hydrological Series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 1942–1948. [Google Scholar] [CrossRef]
- Hauduc, H.; Neumann, M.B.; Muschalla, D.; Gamerith, V.; Gillot, S.; Vanrolleghem, P.A. Efficiency Criteria for Environmental Model Quality Assessment: Areview and Its Application to Wastewater Treatment. Environ. Model. Softw. 2015, 68, 196–204. [Google Scholar] [CrossRef]
- Huda, R.K.; Banka, H. New Efficient Initialization and Updating Mechanisms in PSO for Feature Selection and Classification. Neural Comput. Appl. 2020, 32, 3283–3294. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.M. Groundwater Potential Mapping Using an Integrated Ensemble of Three Bivariate Statistical Models with Random Forest and Logistic Model Tree Models. Water 2019, 11, 1596. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Huang, J.; Han, Z.; Gao, H.; Liu, M.; Li, Z.; Liu, X.; Li, Q.; Qi, H.; Huang, Y. The Importance of Short Lag-Time in the Runoff Forecasting Model Based on Long Short-Term Memory. J. Hydrol. 2020, 589, 125359. [Google Scholar] [CrossRef]
- Leppi, J.C.; DeLuca, T.H.; Harrar, S.W.; Running, S.W. Impacts of Climate Change on August Stream Discharge in the Central-Rocky Mountains. Clim. Chang. 2012, 112, 997–1014. [Google Scholar] [CrossRef]
- Anderson, B.; Mackintosh, A. Temperature Change Is the Major Driver of Late-Glacial and Holocene Glacier Fluctuations in New Zealand. Geology 2006, 34, 121–124. [Google Scholar] [CrossRef]
- Shangguan, D.; Liu, S.; Ding, Y.; Ding, L.; Xu, J.; Jing, L. Glacier Changes during the Last Forty Years in the Tarim Interior River Basin, Northwest China. Prog. Nat. Sci. 2009, 19, 727–732. [Google Scholar] [CrossRef]
- Rangecroft, S.; Harrison, S.; Anderson, K.; Magrath, J.; Castel, A.P.; Pacheco, P. Climate Change and Water Resources in Arid Mountains: An Example from the Bolivian Andes. Ambio 2013, 42, 852–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhang, X.; Fang, G.; Li, Z.; Wang, F.; Qin, J.; Sun, F. Potential Risks and Challenges of Climate Change in the Arid Region of Northwestern China. Reg. Sustain. 2020, 1, 20–30. [Google Scholar] [CrossRef]
- Wufu, A.; Yang, S.; Chen, Y.; Lou, H.; Li, C.; Ma, L. Estimation of Long-Term River Discharge and Its Changes in Ungauged Watersheds in Pamir Plateau. Remote Sens. 2021, 13, 4043. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-Scale Hydrological Response to Future Glacier Mass Loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Karner, F.; Obleitner, F.; Krismer, T.; Kohler, J.; Greuell, W. A Decade of Energy and Mass Balance Investigations on the Glacier Kongsvegen, Svalbard. J. Geophys. Res. Atmos. 2013, 118, 3986–4000. [Google Scholar] [CrossRef] [Green Version]
- Wufu, A.; Chen, Y.; Yang, S.; Lou, H.; Wang, P.; Li, C.; Wang, J.; Ma, L. Changes in Glacial Meltwater Runoff and Its Response to Climate Change in the Tianshan Region Detected Using Unmanned Aerial Vehicles (Uavs) and Satellite Remote Sensing. Water 2021, 13, 1753. [Google Scholar] [CrossRef]
- Meng, C.; Zhou, J.; Tayyab, M.; Zhu, S.; Zhang, H. Integrating Artificial Neural Networks into the VIC Model for Rainfall-Runoff Modeling. Water 2016, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Kan, G.; Yao, C.; Li, Q.; Li, Z.; Yu, Z.; Liu, Z.; Ding, L.; He, X.; Liang, K. Improving Event-Based Rainfall-Runoff Simulation Using an Ensemble Artificial Neural Network Based Hybrid Data-Driven Model. Stoch. Environ. Res. Risk Assess. 2015, 29, 1345–1370. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, C.; Wu, Q.; Jian, S.; Li, Z.; Chen, Y.; Zhang, G.; Zhang, Z.; Wang, S. Research on Particle Swarm Optimization in LSTM Neural Networks for Rainfall-Runoff Simulation. J. Hydrol. 2022, 608, 127553. [Google Scholar] [CrossRef]
- Juan, C.; Genxu, W.; Tianxu, M.; Xiangyang, S. ANN Model-Based Simulation of the Runoff Variation in Response to Climate Change on the Qinghai-Tibet Plateau, China. Adv. Meteorol. 2017, 2017, 9451802. [Google Scholar] [CrossRef]
- Kilinc, H.C. Daily Streamflow Forecasting Based on the Hybrid Particle Swarm Optimization and Long Short-Term Memory Model in the Orontes Basin. Water 2022, 14, 490. [Google Scholar] [CrossRef]
- Samal, D.R.; Gedam, S. Assessing the Impacts of Land Use and Land Cover Change on Water Resources in the Upper Bhima River Basin, India. Environ. Chall. 2021, 5, 4491–4508. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
Parameter | Spearman Rank Correlation Test | M-K Rank Correlation Test | |||||||
---|---|---|---|---|---|---|---|---|---|
rs | Tα/2 | Trend | Significance | Z | Zα/2 | Trend | Significance | ||
Runoff | −0.013 | 0.220 | 1.651 | decreasing | slight | −0.358 | 1.960 | decreasing | slight |
Air Temperature | 0.023 | 0.395 | 1.651 | increasing | slight | 0.415 | 1.960 | increasing | slight |
Precipitation | −0.013 | 0.233 | 1.651 | decreasing | slight | −0.198 | 1.960 | decreasing | slight |
Model | Hidden Layer | Hidden Layer Setting | Dropout Value | Optimization Function | Batch Size |
---|---|---|---|---|---|
Benchmark LSTM | Li = 1, Di = 1 | Ln = 50, Dn = 1 | 0.3 | Adam optimizer | 8 |
PSO-LSTM | Li = 1, Di = 1 | Ln = 50, Dn = 1 | 0.3 | Adam optimizer | 8 |
BiLSTM | Bi = 1, Di = 1 | Bn = 50, Dn = 1 | 0.3 | Adam optimizer | 8 |
Period | Model | RMSE | R2 | MAE |
Training | RF | 8.459 | 0.974 | 5.433 |
LSTM | 5.048 | 0.990 | 3.746 | |
BiLSTM | 8.083 | 0.976 | 5.359 | |
PSO-LSTM | 4.889 | 0.994 | 3.867 | |
Validation | RF | 10.756 | 0.953 | 7.430 |
LSTM | 10.542 | 0.955 | 7.051 | |
BiLSTM | 9.083 | 0.972 | 6.751 | |
PSO-LSTM | 8.034 | 0.973 | 6.082 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Maihemuti, B.; Simayi, Z.; Saydi, M.; Na, L. Prediction of Glacially Derived Runoff in the Muzati River Watershed Based on the PSO-LSTM Model. Water 2022, 14, 2018. https://doi.org/10.3390/w14132018
Yang X, Maihemuti B, Simayi Z, Saydi M, Na L. Prediction of Glacially Derived Runoff in the Muzati River Watershed Based on the PSO-LSTM Model. Water. 2022; 14(13):2018. https://doi.org/10.3390/w14132018
Chicago/Turabian StyleYang, Xiazi, Balati Maihemuti, Zibibula Simayi, Muattar Saydi, and Lu Na. 2022. "Prediction of Glacially Derived Runoff in the Muzati River Watershed Based on the PSO-LSTM Model" Water 14, no. 13: 2018. https://doi.org/10.3390/w14132018
APA StyleYang, X., Maihemuti, B., Simayi, Z., Saydi, M., & Na, L. (2022). Prediction of Glacially Derived Runoff in the Muzati River Watershed Based on the PSO-LSTM Model. Water, 14(13), 2018. https://doi.org/10.3390/w14132018