Removal of Iron(II) from Effluents of Steel Mills Using Chemically Modified Pteris vittata Plant Leaves Utilizing the Idea of Phytoremediation
Abstract
:1. Introduction
2. Material and Methods
2.1. Selection of the Plant
2.2. Chemical Modification
2.3. Characterization of Biosorbent
2.4. Adsorption Experiments
2.5. Isotherm Study
2.6. Adsorption Kinetics
2.7. Effect of pH and Biosorbent Mass
2.8. Evaluation of Thermodynamic Parameters and Regeneration of the Biosorbent
3. Result and Discussion
3.1. Characterization of CMPVL
3.1.1. FTIR Spectra of Unloaded and Loaded Fe(II) CMPVL
3.1.2. Surface Area, and Pore Volume
3.1.3. SEM Images of Treated and Untreated Biosorbent
3.1.4. EDX of Unloaded and Loaded Biosorbent
3.1.5. Thermal Gravimetric Analysis
3.2. Adsorption Isotherms
3.2.1. Langmuir Isothermal Model
3.2.2. Freundlich Isothermal Model
3.2.3. Temkin Isothermal Model
3.2.4. Jovanovic Isotherm
3.2.5. Harkins–Jura Model
3.3. Effect of Contact Time and Kinetic Study
3.3.1. Pseudo-First-Order Kinetic Model
3.3.2. Pseudo-Second-Order Kinetic Model
3.3.3. Power Function Kinetic Model
3.3.4. Intraparticle Diffusion Model
3.3.5. Natarajan Khalaf Kinetic Model
3.4. pH Effect
3.5. Effect of Mass of Biosorbent
3.6. Thermodynamic Parameters
3.7. Regeneration of the Biosorbent
3.8. Comparison of Adsorption Capacities of Present Adsorbents with Those Reported in Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Namasivayam, C.; Sureshkumar, M. Removal of chromium (VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent. Bioresour. Technol. 2008, 99, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.J.; Pardo, R.; Boaventura, R.A. Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: Effect of temperature, pH and water hardness. Water Res. 2004, 38, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Gil, R.A.; Kaplan, M.M.; Salonia, J.A.; Gasquez, J.A.; Martinez, L.D. Total inorganic Se and Te preconcentration and their determination by on-line coupling of a solid-phase extraction procedure with HG-AAS. At. Spectrosc. 2007, 28, 67. [Google Scholar]
- Rekha, D.; Suvardhan, K.; Kumar, S.K.; Reddyprasad, P.; Jayaraj, B.; Chiranjeevi, P. Extractive spectrophotometric determination of copper(II) in water and alloy samples with 3-methoxy-4-hydroxy benzaldehyde-4-bromophenyl hydrazone (3, 4-MHBBPH). J. Serb. Chem. Soc. 2007, 72, 299–310. [Google Scholar] [CrossRef]
- Marsh, H.; Rodriguez-Reinonso, F. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006; pp. 89–100. [Google Scholar]
- Selatnia, A.; Boukazoula, A.; Kechid, N.; Bakhti, M.; Chergui, A. Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Process Biochem. 2004, 39, 1643–1651. [Google Scholar] [CrossRef]
- Yeddou, N.; Bensmaili, A. Equilibrium and kinetic modelling of iron adsorption by eggshells in a batch system: Effect of temperature. Desalination 2007, 206, 127–134. [Google Scholar] [CrossRef]
- Palanisamy, S.; Nachimuthu, P.; Awasthi, M.K.; Ravindran, B.; Chang, S.W.; Palanichamy, M.; Nguyen, D.D. Application of electrochemical treatment for the removal of triazine dye using aluminium electrodes. J. Water Supply Res. Technol. Aqua 2020, 69, 345–354. [Google Scholar] [CrossRef]
- Rizzuti, A.M.; Winston, R.J.; Orr, I.S. Biosorption of copper from aqueous solutions utilizing agricultural wastes. Remediat. J. 2021, 31, 39–46. [Google Scholar] [CrossRef]
- Chen, J.M.; Hao, O.J. Microbial chromium (VI) reduction. Crit. Rev. Environ. Sci. Technol. 1998, 28, 219–251. [Google Scholar] [CrossRef]
- Papandreou, A.; Stournaras, C.; Panias, D. Copper and cadmium adsorption on pellets made from fired coal fly ash. J. Hazard. Mater. 2007, 148, 538–547. [Google Scholar] [CrossRef]
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. Metal-contaminated soils: Remediation practices and treatment technologies. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2008, 12, 188–209. [Google Scholar] [CrossRef]
- Dizge, N.; Keskinler, B.; Barlas, H. Sorption of Ni(II) ions from aqueous solution by Lewatit cation-exchange resin. J. Hazard. Mater. 2009, 167, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Hamdaoui, O. Removal of copper(II) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: Modeling. J. Hazard. Mater. 2009, 161, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.Y.; Lee, K.S.; Lee, D.S.; Jeon, D.S.; Park, M.S.; Shin, J.S.; Lee, Y.K.; Goo, J.W.; Kim, S.B.; Chung, D.Y. Application of electrocoagulation and electrolysis on the precipitation of heavy metals and particulate solids in washwater from the soil washing. J. Agric. Chem. Environ. 2014, 3, 130. [Google Scholar] [CrossRef] [Green Version]
- Crittenden, J.C.; Li, K.; Minakata, D.; Westerhoff, P.; Jeong, H.; Hokanson, D.; Trussell, R. Understanding and Improving Process Performance of Advanced Oxidation Processes (AOPs); The Croucher Foundation Advanced Study Institute (ASI): Hong Kong, China, 2008. [Google Scholar]
- Ku, Y.; Jung, I.-L. Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 2001, 35, 135–142. [Google Scholar] [CrossRef]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Tay, C.-C.; Liew, H.-H.; Redzwan, G.; Yong, S.-K.; Surif, S.; Abdul-Talib, S. Pleurotus ostreatus spent mushroom compost as green biosorbent for nickel(II) biosorption. Water Sci. Technol. 2011, 64, 2425–2432. [Google Scholar] [CrossRef] [Green Version]
- Volesky, B. Biosorption and me. Water Res. 2007, 41, 4017–4029. [Google Scholar] [CrossRef]
- Mumford, A.C.; Barringer, J.L.; Benzel, W.M.; Reilly, P.A.; Young, L. Microbial transformations of arsenic: Mobilization from glauconitic sediments to water. Water Res. 2012, 46, 2859–2868. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Mohapatra, M.; Anand, S. Studies on sorption of Cd(II) on Tata chromite mine overburden. J. Hazard. Mater. 2007, 148, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Bomis, G.; Kosheleva, R.I.; Efthimiadou, E.K.; Favvas, E.P.; Kostoglou, M.; Mitropoulos, A.C. Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chem. Eng. J. 2019, 356, 91–97. [Google Scholar] [CrossRef]
- Singh, K.; Singh, A.; Hasan, S. Low cost bio-sorbent wheat bran’for the removal of cadmium from wastewater: Kinetic and equilibrium studies. Bioresour. Technol. 2006, 97, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef] [PubMed]
- Lata, S.; Singh, P.; Samadder, S. Regeneration of adsorbents and recovery of heavy metals: A review. Int. J. Environ. Sci. Technol. 2015, 12, 1461–1478. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M.C. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Uber die adsorption in losungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Park, J.C.; Joo, J.B.; Yi, J. Adsorption of acid dyes using polyelectrolyte impregnated mesoporous silica. Korean J. Chem. Eng. 2005, 22, 276–280. [Google Scholar] [CrossRef]
- Malkoc, E.; Nuhoglu, Y. Determination of kinetic and equilibrium parameters of the batch adsorption of Cr (VI) onto waste acorn of Quercus ithaburensis. Chem. Eng. Process. Process Intensif. 2007, 46, 1020–1029. [Google Scholar] [CrossRef]
- Ho, Y.; Porter, J.; McKay, G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air Soil Pollut. 2002, 141, 1–33. [Google Scholar] [CrossRef]
- Isotherms, T.A. Sorption Energies Estimation Using Dubinin-Radushkevich and. Life Sci. J. 2010, 7, 31–39. [Google Scholar]
- Lagregren, S. About the theory of so-called adsorption of soluble substances. Kungl. Sven. Veten. Akad. Handl. 1898, 24, 1–39. [Google Scholar]
- Riahi, K.; Chaabane, S.; Thayer, B.B. A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. J. Saudi Chem. Soc. 2017, 21, S143–S152. [Google Scholar] [CrossRef] [Green Version]
- Cheung, W.; Ng, J.; McKay, G. Kinetic analysis of the sorption of copper(II) ions on chitosan. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2003, 78, 562–571. [Google Scholar] [CrossRef]
- Srivastava, S.; Tyagi, R.; Pant, N. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 1989, 23, 1161–1165. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Tay, C.-C.; Liew, H.-H.; Yong, S.-K.; Surif, S.; Redzwan, G.; Abdul-Talib, S. Cu(II) removal onto fungal derived biosorbents: Biosorption performance and the half saturation constant concentration approach. Int. J. Res. Chem. Environ. 2012, 2, 138–143. [Google Scholar]
- Popoola, L.T.; Grema, A.S.; Latinwo, G.K.; Gutti, B.; Balogun, A.S. Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 2013, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rahim, A.R.A.; Johari, K.; Shehzad, N.; Saman, N.; Mat, H. Conversion of coconut waste into cost effective adsorbent for Cu(II) and Ni(II) removal from aqueous solutions. Environ. Eng. Res. 2020, 26, 200250. [Google Scholar] [CrossRef]
- Wu, D.; Li, H.; Liao, S.; Sun, X.; Peng, H.; Zhang, D.; Pan, B. Co-sorption of ofloxacin and Cu(II) in soils before and after organic matter removal. Sci. Total Environ. 2014, 481, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, A.; Siddique, Z. Removal of heavy metal ions by chemically treated Melia azedarach L. leaves. J. Environ. Chem. Eng. 2015, 3, 944–952. [Google Scholar] [CrossRef]
- Ahluwalia, S.; Goyal, D. Removal of heavy metals by waste tea leaves from aqueous solution. Eng. Life Sci. 2005, 5, 158–162. [Google Scholar] [CrossRef]
- N′dah, F.M.; Ahmed Kankou, M.; Abdallahi Bollahi, M.; N′diaye, A.D. Removal of Iron from Aqueous Solution by using Typha australis Leaves as Low Cost Adsorbent. Pollution 2022, 8, 397–406. [Google Scholar]
- Elsherif, K.M.; Ewlad-Ahmed, A.M.S.; Treban, A.A.S. Biosorption studies of Fe(III), Cu(II), and Co(II) from aqueous solutions by olive leaves powder. Appl. J. Environ. Eng. Sci. 2017, 3, 3–4. [Google Scholar]
- Indracanti, M.; Gunturu, C. Removal of iron(III) from aqueous solutions using plant weed Launea procumbens leaves. Int. J. New Innov. Eng. Technol. 2019, 11, 1–6. [Google Scholar]
Parameter | Value |
---|---|
BET surface area (m2/g) | 73.28 |
Pore volume (cc/g) | 0.82 |
Isotherm | Parameters | Values |
---|---|---|
Langmuir | ||
qmax (mg g−1) | 100 | |
KL (Lmg−1) | 0.0282 | |
R2 | 0.977 | |
Freundlich | ||
KF (mg g−1) | 3.550 | |
1/n | 0.663 | |
R2 | 0.848 | |
Temkin | ||
β | 23.58 | |
α | 4.874 | |
b | 96.256 | |
R2 | 0.961 | |
Jovanovich | ||
KJ (Lg−1) | 0.009 | |
qmax (mg g−1) | 23.196 | |
R2 | 0.525 | |
Hurkins-Jura | ||
AH (g2 L−1) | 0.5 | |
BH (mg2 L−1) | 2 | |
R2 | 0.588 |
Kinetic Model | Parameters | Values |
---|---|---|
Pseudo-first-order | ||
K1 (min−1) | −0.028 | |
qe (mg g−1) | 10.064 | |
R2 | 0.988 | |
Pseudo-second-order | ||
K2 (min−1) | 0.00487 | |
qe (mg g−1) | 27.77 | |
R2 | 0.999 | |
Power function | ||
α | 13.4586 | |
b | 0.136 | |
R2 | 0.974 | |
Natarajan and khalaf | ||
KN (min−1) | 1.15 × 10−2 | |
R2 | 0.943 | |
Intra particular diffusion | ||
Kdiff (mg/g min1/2) | 5 × 10−3 | |
C | 0.485 | |
R2 | 0.943 |
Biosorbent | CMPVL |
---|---|
ΔH° (J/mol K) | −13.92 |
ΔS° (J/mol K) | 46.5 |
ΔG° (kJ/mol) | |
293 K | −13.638 |
303 K | −14.10 |
313 K | −14.568 |
323 K | −15.033 |
333 K | −15.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Q.; Zahoor, M.; Salman, S.M.; Wahab, M.; Khan, F.A.; Gulfam, N.; Zekker, I. Removal of Iron(II) from Effluents of Steel Mills Using Chemically Modified Pteris vittata Plant Leaves Utilizing the Idea of Phytoremediation. Water 2022, 14, 2004. https://doi.org/10.3390/w14132004
Khan Q, Zahoor M, Salman SM, Wahab M, Khan FA, Gulfam N, Zekker I. Removal of Iron(II) from Effluents of Steel Mills Using Chemically Modified Pteris vittata Plant Leaves Utilizing the Idea of Phytoremediation. Water. 2022; 14(13):2004. https://doi.org/10.3390/w14132004
Chicago/Turabian StyleKhan, Qaiser, Muhammad Zahoor, Syed Muhammad Salman, Muhammad Wahab, Farhat Ali Khan, Naila Gulfam, and Ivar Zekker. 2022. "Removal of Iron(II) from Effluents of Steel Mills Using Chemically Modified Pteris vittata Plant Leaves Utilizing the Idea of Phytoremediation" Water 14, no. 13: 2004. https://doi.org/10.3390/w14132004
APA StyleKhan, Q., Zahoor, M., Salman, S. M., Wahab, M., Khan, F. A., Gulfam, N., & Zekker, I. (2022). Removal of Iron(II) from Effluents of Steel Mills Using Chemically Modified Pteris vittata Plant Leaves Utilizing the Idea of Phytoremediation. Water, 14(13), 2004. https://doi.org/10.3390/w14132004