Spatiotemporal Distribution and Statistical Analysis of Abnormal Groundwater Level Rising in Poyang Lake Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Geostatistical Methods
2.3.2. Outlier Identification
MAD
IQR
3. Results
3.1. Spatiotemporal Dynamic Characteristics of Groundwater Level
3.2. Statistics of Groundwater Level Rising Events
3.3. Identification of AGLR Events
3.3.1. Identification of AGLR Events Using MAD
3.3.2. Identification of AGLR Events Using IQR
3.4. Comparative Analysis of Dynamics in Groundwater Level, River Stage, and Precipitation
4. Discussion
4.1. Comparison of Abnormal Thresholds Using MAD and IQR
4.2. Analysis of Factors Affecting Abnormal Rising of Groundwater Level
5. Conclusions
- The groundwater level distribution in the PLB was consistent with the topography, showing the characteristics of a higher surrounding groundwater level, lower in the middle, and a self-flowing slope from the south to the north. The groundwater monitoring stations in the PLB have the phenomenon of rising groundwater levels. Spatially, the AGLR events were mainly concentrated in the areas closer to the surface water bodies and temporally were mainly concentrated in the wet season.
- The results of the MAD and IQR methods for identifying AGLR were similar yet different. The MAD method identified more AGLR duration events, whereas the IQR method identified more AGLR rate events. The spatial and temporal distributions of these two AGLR event methods were similar. The abnormal threshold of the rising duration calculated by the IQR method was more significant than that of the MAD method. In contrast, the abnormal threshold of the rising rate was smaller than that of the MAD method.
- There were fundamental synchronous changes in groundwater level, river stage, and precipitation in the PLB. The correlation between precipitation and groundwater level was related to topography; the higher the elevation, the more significant was the correlation between precipitation and groundwater level. The correlation between river stage and groundwater level was related to runoff volume; the higher the runoff volume, the more significant was the correlation between the river stage and groundwater level.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
XSRB | Xiushui River Basin | ||
PLB | Poyang Lake Basin | X1, X2,…, Xn | independent random variables series |
AGLR | abnormal groundwater level rising | x1, x2,…, xn | original sample series |
3σ | the three-sigma rule | x1, x2,…, xm | new sample series |
MAD | median absolute deviation | Z | the median of the sample series |
IQR | interquartile range | b | model constant of MAD method |
GJRB | Ganjiang River Basin | xi | sample value |
FHRB | Fuhe River Basin | A | outlier identification coefficient |
XJRB | Xinjiang River Basin | Max | maximum |
RHRB | Raohe River Basin | Min | minimum |
References
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Change 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Jia, X.; O’Connor, D.; Hou, D.; Jin, Y.; Li, G.; Zheng, C.; Ok, Y.S.; Tsang, D.; Luo, J. Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Sci. Total Environ. 2019, 672, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Essam, D.; Ahmed, M.; Abouelmagd, A.; Soliman, F. Monitoring temporal variations in groundwater levels in urban areas using ground penetrating radar. Sci. Total Environ. 2019, 703, 134986. [Google Scholar] [CrossRef] [PubMed]
- Bob, M.; Rahman, N.A.; Elamin, A.; Taher, S. Rising Groundwater Levels Problem in Urban Areas: A Case Study from the Central Area of Madinah City, Saudi Arabia. Arab. J. Sci. Eng. 2016, 41, 1461–1472. [Google Scholar] [CrossRef]
- Xia, J.; Chen, J. A new era of flood control strategies from the perspective of managing the 2020 Yangtze River flood. Sci. China Earth Sci. 2021, 64, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, L.; Wu, M.; Wang, H.; Song, F.; Leung, L.R.; Hao, X.; Li, J.; Chen, L.; Li, H.; et al. Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China. Nat. Commun. 2022, 13, 959. [Google Scholar] [CrossRef] [PubMed]
- Bachand, C.L.; Walsh, J.E. Extreme Precipitation Events in Alaska: Historical Trends and Projected Changes. Atmosphere 2022, 13, 388. [Google Scholar] [CrossRef]
- Tabari, H. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 2021, 593, 125932. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Xu, C.-Y.; Hong, Y.; Hardy, J.; Sun, Z. Examining the influence of river–lake interaction on the drought and water resources in the Poyang Lake basin. J. Hydrol. 2015, 522, 510–521. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Chen, G.; Wu, J.; Wu, J. Variation of lake-river-aquifer interactions induced by human activity and climatic condition in Poyang Lake Basin, China. J. Hydrol. 2021, 595, 126058. [Google Scholar] [CrossRef]
- Deoli, V.; Kumar, D.; Kumar, M.; Kuriqi, A.; Elbeltagi, A. Water spread mapping of multiple lakes using remote sensing and satellite data. Arab. J. Geosci. 2021, 14, 2213. [Google Scholar] [CrossRef]
- Mouttaki, I.; Khomalli, Y.; Maanan, M.; Bagdanavičiūtė, I.; Rhinane, H.; Kuriqi, A.; Pham, Q.; Maanan, M. A New Approach to Mapping Cultural Ecosystem Services. Environments 2021, 8, 56. [Google Scholar] [CrossRef]
- Pandey, K.; Kumar, S.; Malik, A.; Kuriqi, A. Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India. Sustainability 2020, 12, 8932. [Google Scholar] [CrossRef]
- Macdonald, D.; Dixon, A.; Newell, A.; Hallaways, A. Groundwater flooding within an urbanised flood plain. J. Flood Risk Manag. 2012, 5, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Sinha, R. Evaluating dynamic hydrological connectivity of a floodplain wetland in North Bihar, India using geostatistical methods. Sci. Total Environ. 2019, 651, 2473–2488. [Google Scholar] [CrossRef]
- Ly, S.; Charles, C.; Degré, A. Geostatistical interpolation of daily rainfall at catchment scale: The use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci. 2011, 15, 2259–2274. [Google Scholar] [CrossRef] [Green Version]
- Budiman, J.S.; Al-Amri, N.S.; Chaabani, A.; Elfeki, A.M.M. Geostatistical based framework for spatial modeling of groundwater level during dry and wet seasons in an arid region: A case study at Hadat Ash-Sham experimental station, Saudi Arabia. Stoch. Hydrol. Hydraul. 2021, 1–15. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Esmaeelnejad, L.; Shabanpour, M. Spatial variation modelling of groundwater electrical conductivity using geostatistics and GIS. Model. Earth Syst. Environ. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Song, Z.; Wang, W.; Zhang, Y.; Si, H.; Liu, B.; Shu, L. Spatiotemporal variation and long-range correlation of groundwater depth in the Northeast China Plain and North China Plain from 2000∼2019. J. Hydrol. Reg. Stud. 2021, 37, 100888. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Least Median of Squares Regression. J. Am. Stat. Assoc. 1984, 79, 871–880. [Google Scholar] [CrossRef]
- Hodge, V.; Austin, J. A Survey of Outlier Detection Methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Park, E.; Han, W.S.; Kim, K.-Y.; Choung, S.; Chung, I.M. Identifying outliers of non-Gaussian groundwater state data based on ensemble estimation for long-term trends. J. Hydrol. 2017, 548, 135–144. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, H.; Wang, S.; Zheng, L.; Liao, M. Spatiotemporal Dynamics of Water Body Changes and Their Influencing Factors in the Seasonal Lakes of the Poyang Lake Region. Water 2021, 13, 1539. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, S.; Guo, H.; Chen, G.; Jiang, T. Interactions of the Yangtze river flow and hydrologic processes of the Poyang Lake, China. J. Hydrol. 2007, 347, 90–100. [Google Scholar] [CrossRef]
- Zhao, G.; Hörmann, G.; Fohrer, N.; Zhang, Z.; Zhai, J. Streamflow Trends and Climate Variability Impacts in Poyang Lake Basin, China. Water Resour. Manag. 2010, 24, 689–706. [Google Scholar] [CrossRef]
- Lei, X.; Gao, L.; Wei, J.; Ma, M.; Xu, L.; Fan, H.; Li, X.; Gao, J.; Dang, H.; Chen, X.; et al. Contributions of climate change and human activities to runoff variations in the Poyang Lake Basin of China. Phys. Chem. Earth, Parts A/B/C 2021, 123, 103019. [Google Scholar] [CrossRef]
- Werner, W. Polynomial Interpolation: Lagrange versus Newton. Math. Comput. 1984, 43, 205–217. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Sedghamiz, A. Application and evaluation of kriging and cokriging methods on groundwater depth mapping. Environ. Monit. Assess. 2008, 138, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Bilonick, R.A. An Introduction to Applied Geostatistics; Taylor & Francis: Oxfordshire, UK, 1991. [Google Scholar]
- Kitanidis, P.K. Introduction to Geostatistics: Applications in Hydrogeology; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Massey, F.J., Jr. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Filzmoser, P.; Maronna, R.; Werner, M. Outlier identification in high dimensions. Comput. Stat. Data Anal. 2008, 52, 1694–1711. [Google Scholar] [CrossRef]
- Hampel, F.R. The Influence Curve and Its Role in Robust Estimation. J. Am. Stat. Assoc. 1974, 69, 383. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M. On Enhanced Interquartile Range Charting for Process Dispersion. Qual. Reliab. Eng. Int. 2015, 31, 389–398. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [Green Version]
- Rinderer, M.; van Meerveld, H.J.; Seibert, J. Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid? Water Resour. Res. 2014, 50, 6067–6080. [Google Scholar] [CrossRef]
- Anderson, M.G.; Burt, T.P. The role of topography in controlling throughflow generation. Earth Surf. Process. Landforms 1978, 3, 331–344. [Google Scholar] [CrossRef]
- Zhan, L.; Chen, J.; Zhang, S.; Li, L.; Huang, D.; Wang, T. Isotopic signatures of precipitation, surface water, and groundwater interactions, Poyang Lake Basin, China. Environ. Earth Sci. 2016, 75, 1307. [Google Scholar] [CrossRef]
- Mao, H.; Wang, G.; Shi, Z.; Liao, F.; Xue, Y. Spatiotemporal Variation of Groundwater Recharge in the Lower Reaches of the Poyang Lake Basin, China: Insights From Stable Hydrogen and Oxygen Isotopes. J. Geophys. Res. Atmos. 2021, 126, e2020JD033760. [Google Scholar] [CrossRef]
- Garg, K.K.; Anantha, K.H.; Radha, A.V.; Dixit, S.; Singh, R.; Ragab, R. Impact of Rainwater Harvesting on Hydrological Processes in a Fragile Watershed of South Asia. Ground Water 2021, 59, 839–855. [Google Scholar] [CrossRef]
- Wang, S.; Song, X.; Wang, Q.; Xiao, G.; Liu, C.; Liu, J. Shallow groundwater dynamics in North China Plain. J. Geogr. Sci. 2009, 19, 175–188. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Sun, R.; Xu, Z.; Tang, W. The Dynamic Change and Effect of Rainfall Induced Groundwater Flow. Water 2021, 13, 2625. [Google Scholar] [CrossRef]
Year/Basin 1 | Max | Month | Min | Month | CV | Mean | Median | |
---|---|---|---|---|---|---|---|---|
Groundwater level (m) | 2018 | 64.3 | Jul | 63.70 | Oct | 0.00 | 64.0 | 42.4 |
2019 | 65.1 | Jul | 63.5 | Dec | 0.01 | 64.3 | 42.5 | |
2020 | 65.1 | Jul | 63.8 | Jan | 0.01 | 64.5 | 42.5 | |
Precipitation (mm) | GJRB | 312.3 | Jun | 43.7 | Oct | 0.61 | 143.0 | 113.8 |
FHRB | 300.4 | Jul | 44.8 | Oct | 0.62 | 150.9 | 113.5 | |
XJRB | 349.0 | Jun | 44.0 | Oct | 0.64 | 151.9 | 136.7 | |
RHRB | 388.5 | Jul | 33.5 | Oct | 0.62 | 161.7 | 154.8 | |
XSRB | 347.0 | Jul | 48.7 | Oct | 0.63 | 146.3 | 120.5 | |
Runoff (109 m3) | GJRB | 162.2 | Jun | 26.8 | Dec | 0.68 | 68.0 | 42.1 |
FHRB | 37.2 | Jul | 1.6 | Oct | 1.02 | 10.9 | 6.2 | |
XJRB | 55.4 | Jul | 4.4 | Nov | 0.94 | 16.4 | 9.7 | |
RHRB | 27.1 | Jul | 1.1 | Nov | 1.15 | 6.3 | 3.3 | |
XSRB | 13.3 | Jul | 1.7 | Nov | 0.75 | 4.3 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Lu, C.; Zhang, Y.; Chen, J.; Liu, W.; Liu, B.; Shu, L. Spatiotemporal Distribution and Statistical Analysis of Abnormal Groundwater Level Rising in Poyang Lake Basin. Water 2022, 14, 1906. https://doi.org/10.3390/w14121906
Song Z, Lu C, Zhang Y, Chen J, Liu W, Liu B, Shu L. Spatiotemporal Distribution and Statistical Analysis of Abnormal Groundwater Level Rising in Poyang Lake Basin. Water. 2022; 14(12):1906. https://doi.org/10.3390/w14121906
Chicago/Turabian StyleSong, Ziyi, Chengpeng Lu, Ying Zhang, Jing Chen, Wenlu Liu, Bo Liu, and Longcang Shu. 2022. "Spatiotemporal Distribution and Statistical Analysis of Abnormal Groundwater Level Rising in Poyang Lake Basin" Water 14, no. 12: 1906. https://doi.org/10.3390/w14121906
APA StyleSong, Z., Lu, C., Zhang, Y., Chen, J., Liu, W., Liu, B., & Shu, L. (2022). Spatiotemporal Distribution and Statistical Analysis of Abnormal Groundwater Level Rising in Poyang Lake Basin. Water, 14(12), 1906. https://doi.org/10.3390/w14121906