Mixotrophic Denitrification of Glucose Polymer-Based Pyrite Tailings for Enhanced Nitrogen and Phosphorus Removal of Municipal Tailwater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Materials
2.2.1. Pyrite Tailings Treatment
2.2.2. Preparation of Glucose Polymer-Based Pyrite Tailings
2.2.3. Simulation of Sewage Quality
2.3. Method
2.4. Characterization
2.4.1. X-ray Diffraction Spectrometry (XRD)
2.4.2. FTIR Analysis Method
2.4.3. Zeta Analysis Method
2.5. Water Quality Analysis Methods
3. Results and Discussion
3.1. Characterization of Pyrite Tailings and Glucose Polymer-Based Pyrite Tailings
3.2. Analysis of Effluent Quality
3.2.1. Change of Effluent pH
3.2.2. Change of Nitrogen in Effluent
3.2.3. Change of Positive Phosphorus (PO43−-P) in Effluent
3.2.4. Change of Effluent Sulfate
3.3. Study on Nitrogen- and Phosphorus-Removal Mechanism
Microbial Community Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rakesh, S.-A.; Santosh, K.-S.; Shweta, S.; Megha, S. Wastewater Treatment by Effluent Treatment Plants. SSRG Int. J. Civ. Eng. 2016, 3, 29–35. [Google Scholar]
- Sun, S.; Lin, H.; Lin, J.; Quan, Z.; Zhang, P.; Ma, R. Underground sewage treatment plant: A summary and discussion on the current status and development prospects. Water Sci. Technol. 2019, 80, 1601–1611. [Google Scholar] [CrossRef]
- Preisner, M.; Neverova-Dziopak, E.; Kowalewski, Z. Analysis of eutrophication potential of municipal wastewater. Water Sci. Technol. 2020, 81, 1994–2003. [Google Scholar] [CrossRef]
- Nicholas, D.-I.; Michael, A.-M.; Lawrence, B.-C.; Douglas, W.-G.; Peter, B.-Z. Nutrient dynamics in a eutrophic blackwater urban lake. Lake Reserv. Manag. 2022, 38, 28–46. [Google Scholar]
- Cheng, X.; Li, S. An analysis on the evolvement processes of lake eutrophication and their characteristics of the typical lakes in the middle and lower reaches of Yangtze River. Sci. Bull. 2006, 51, 1603–1613. [Google Scholar] [CrossRef]
- Lee, S.; Maken, S.; Jang, J.; Park, K.; Park, J. Development of physicochemical nitrogen removal process for high strength industrial wastewater. Water Res. 2006, 40, 975–980. [Google Scholar] [CrossRef]
- Benekos, A.K.; Tsigara, M.; Zacharakis, S.; Triantaphyllidou, I.-E.; Tekerlekopoulou, A.G.; Katsaounis, A.; Vayenas, D.V. Combined electrocoagulation and electrochemical oxidation treatment for groundwater denitrification. J. Environ. Manag. 2021, 285, 112068. [Google Scholar] [CrossRef]
- Song, T.; Zhang, X.; Li, J.; Wu, X.; Feng, H.; Dong, W. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). Sci. Total Environ. 2021, 801, 14939. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, X.; Zhou, X.; Chen, C. Recent Advances in Autotrophic Biological Nitrogen Removal for Low Carbon Wastewater: A Review. Water 2022, 14, 1101. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, J.; Tang, Q.; Sun, L.; Cui, J.; Liu, X.; Yao, D.; Han, S. Reed Biochar Addition to Composite Filler Enhances Nitrogen Removal from BDBR Systems in Eutrophic Rivers Channel. Water 2021, 13, 2501. [Google Scholar] [CrossRef]
- Chen, D.; Chen, P.; Zheng, X.; Cheng, W.; Wang, Q.; Wei, X. Enhanced Denitrification of Integrated Sewage Treatment System by Supplementing Denitrifying Carbon Source. Int. J. Environ. Res. Public Health 2021, 18, 9569. [Google Scholar] [CrossRef]
- Didem, G. Effects of Different Carbon Sources on Denitrification Efficiency Associated with Culture Adaptation and C/N Ratio. CLEAN Soil Air Water 2009, 37, 565–573. [Google Scholar]
- Neda, M.; Eisa, E.; Seyed, A.; Julie, E. Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture 2019, 512, 734235. [Google Scholar]
- Khanichaidecha, W.; Nakaruk, A.; Ratananikom, K.; Eamrat, R.; Kazama, F. Heterotrophic nitrification and aerobic denitrification using pure-culture bacteria for wastewater treatment. J. Water Reuse Desalination 2019, 9, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, N.; Feng, C.; Deng, Y. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources. Sci. Total Environ. 2021, 780, 146521. [Google Scholar] [CrossRef]
- Fu, X.; Hou, R.; Yang, P.; Qian, S.; Feng, Z.; Chen, Z.; Wang, F.; Yuan, R.; Chen, H.; Zhou, B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total Environ. 2022, 817, 153061. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, H.; Zhang, H.; Su, S.; Sun, Y.; Wang, H.; Han, J.; Wang, A.; Guadie, A. Sulfur autotrophic denitrification filter and heterotrophic denitrification filter: Comparison on denitrification performance, hydrodynamic characteristics and operating cost. Environ. Res. 2021, 197, 111029. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Wang, H. Mixotrophic denitrification for enhancing nitrogen removal of municipal tailwater: Contribution of heterotrophic/sulfur autotrophic denitrification and bacterial community. Sci. Total Environ. 2022, 814, 151940. [Google Scholar] [CrossRef]
- Lorna, G.; Juan, P.; Maria, A.; Andrea, B.; Cesar, H.; Silvio, M.; Rafael, B. Autotrophic and heterotrophic denitrification for simultaneous removal of nitrogen, sulfur and organic matter. J. Environ. Sci. Health Part A 2016, 51, 1159875. [Google Scholar]
- Francesco, D.; Francesco, P.; Lens, P.N.L.; Giovanni, E. Electron donors for autotrophic denitrification. Chem. Eng. J. 2019, 362, 922–937. [Google Scholar]
- Kong, Z.; Li, L.; Feng, C.; Dong, S.; Chen, N. Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment. Bioresour. Technol. 2016, 211, 125–135. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Huang, B.; Li, J.; Jin, R. Multiple electron acceptor-mediated sulfur autotrophic denitrification: Nitrogen source competition, long-term performance and microbial community evolution. Bioresour. Technol. 2021, 329, 124918. [Google Scholar] [CrossRef]
- Deng, S.; Peng, S.; Huu, H.; Sam, J.; Hu, Z.; Yao, H.; Li, D. Characterization of nitrous oxide and nitrite accumulation during iron (Fe(0))- and ferrous iron (Fe(II))-driven autotrophic denitrification: Mechanisms, environmental impact factors and molecular microbial characterization. Chem. Eng. J. 2022, 438, 135627. [Google Scholar] [CrossRef]
- Mai, Y.; Liang, Y.; Cheng, M.; He, Z.; Yu, G. Coupling oxidation of acid volatile sulfide, ferrous iron, and ammonia nitrogen from black-odorous sediment via autotrophic denitrification-anammox by nitrate addition. Sci. Total Environ. 2021, 790, 147972. [Google Scholar] [CrossRef]
- Chen, Y.; Shao, Z.; Kong, Z.; Gu, L.; Fang, J.; Chai, H. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment. J. Water Process Eng. 2020, 37, 101414. [Google Scholar] [CrossRef]
- Oznur, K.; Claudio, C.; Krishna, R.-R. Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Rev. Environ. Sci. Bio Technol. 2018, 17, 205–228. [Google Scholar]
- Klimenko, N.-A.; Savchina, L.-A.; Kozyatnik, I.-P.; Goncharuk, V.-V.; Samsoni-Todorov, A.-O. The Effect of Preliminary Ozonization on the Bioregeneration of Activated Carbon during Its Long-Term Service. Phys. Chem. Water Treat. Processes 2009, 31, 220–226. [Google Scholar] [CrossRef]
- Goncharuk, V.-V.; Kozyatnik, I.-P.; Klimenko, N.-A.; Savchina, L.-A. Natural Bioregeneration of Activated Carbons in Filters for Add-on Treatment of Drinking Water during Their Continuous Operation. J. Water Chem. Technol. 2007, 29, 300–306. [Google Scholar] [CrossRef]
Analysis Index | Analytical Method | Analytical Instrument | Instrument Model |
---|---|---|---|
NO3−-N | Ultraviolet spectrophotometry | Ultraviolet/visible spectrophotometer | UV-5100 |
NO2−-N | N-1-naphthalene-ethylenediamine spectrophotometric method | ||
NH4+-N | Sodium reagent spectrophotometry | ||
PO43−-P | Molybdenum antimony anti spectrophotometric method | ||
SO42− | Ion chromatography | ion chromatograph | ICS900DionexIonPac |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, J.; Che, H.; Wang, X.; He, M.; Cheng, C.; Wang, M.; Sun, B.; Zhu, S. Mixotrophic Denitrification of Glucose Polymer-Based Pyrite Tailings for Enhanced Nitrogen and Phosphorus Removal of Municipal Tailwater. Water 2022, 14, 1868. https://doi.org/10.3390/w14121868
Mao J, Che H, Wang X, He M, Cheng C, Wang M, Sun B, Zhu S. Mixotrophic Denitrification of Glucose Polymer-Based Pyrite Tailings for Enhanced Nitrogen and Phosphorus Removal of Municipal Tailwater. Water. 2022; 14(12):1868. https://doi.org/10.3390/w14121868
Chicago/Turabian StyleMao, Jie, Haojie Che, Xinyu Wang, Mengqi He, Chun Cheng, Meng Wang, Bai Sun, and Shuguang Zhu. 2022. "Mixotrophic Denitrification of Glucose Polymer-Based Pyrite Tailings for Enhanced Nitrogen and Phosphorus Removal of Municipal Tailwater" Water 14, no. 12: 1868. https://doi.org/10.3390/w14121868
APA StyleMao, J., Che, H., Wang, X., He, M., Cheng, C., Wang, M., Sun, B., & Zhu, S. (2022). Mixotrophic Denitrification of Glucose Polymer-Based Pyrite Tailings for Enhanced Nitrogen and Phosphorus Removal of Municipal Tailwater. Water, 14(12), 1868. https://doi.org/10.3390/w14121868