Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid Areas
Abstract
:1. Introduction
2. Overview of This Special Issue
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hillel, D. 1. Soil Physics and Soil Physical Characteristics. In Introduction to Soil Physics; Elsevier Academic Press: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Wikipedia. Ecohydrology. Available online: https://en.wikipedia.org/w/index.php?title=Ecohydrology&oldid=1077116263 (accessed on 17 May 2022).
- Di Prima, S.; Castellini, M.; Pirastru, M.; Keesstra, S. Soil Water Conservation: Dynamics and Impact. Water 2018, 10, 952. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Jia, S.F. Assessment of hydro-climatic trends and causes of dramatically declining stream flow to Lake Chad, Africa, using a hydrological approach. Sci. Total Environ. 2019, 675, 122–140. [Google Scholar] [CrossRef] [PubMed]
- Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: Yield analysis and soil fertility. Ital. J. Agron. 2012, 7, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Ventrella, D.; Charfeddine, M.; Giglio, L.; Castellini, M. Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern Italy: Optimum sowing and transplanting time for winter durum wheat and tomato. Ital. J. Agron. 2012, 7, 109–115. [Google Scholar] [CrossRef]
- Berger, J.; Palta, J.; Vades, V. An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought: A Review Article. Plant Sci. 2016, 253, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Yang, W.; Zhan, H.; Jiang, Q.; Shi, M.; Wang, Y. On the Origin of Deep Soil Water Infiltration in the Arid Sandy Region of China. Water 2020, 12, 2409. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z. Environmental Control on Transpiration: A Case Study of a Desert Ecosystem in Northwest China. Water 2020, 12, 1211. [Google Scholar] [CrossRef]
- Jia, W.; Yin, L.; Zhang, M.; Yu, K.; Wang, L.; Hu, F. Estimation of Groundwater Evapotranspiration of Different Dominant Phreatophytes in the Mu Us Sandy Region. Water 2021, 13, 440. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.; Aikebaier, Y.; Dong, T.; Huang, G.; Qu, T.; Zhang, H. Sustainable Development of Arid Rangelands and Managing Rainwater in Gullies, Central Asia. Water 2020, 12, 2533. [Google Scholar] [CrossRef]
- Pereira, N.A.; Di Prima, S.; Bovi, R.C.; da Silva, L.F.S.; de Godoy, G.; Naves, R.P.; Cooper, M. Does the Process of Passive Forest Restoration Affect the Hydrophysical Attributes of the Soil Superficial Horizon? Water 2020, 12, 1689. [Google Scholar] [CrossRef]
- Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Chen, J.-P.; Zhang, F.; Yuan, S.-S. Spatiotemporal Analysis of Evapotranspiration and Effects of Water and Heat on Water Use Efficiency. Water 2021, 13, 3019. [Google Scholar] [CrossRef]
- Ternes, B. Technological Spaces in the Semi-Arid High Plains: Examining Well Ownership and Investment in Water-Saving Appliances. Water 2021, 13, 365. [Google Scholar] [CrossRef]
- Park, W.-P.; Hyun, H.-N.; Koo, B.-J. Silicon Fractionation of Soluble Silicon in Volcanic Ash Soils That May Affect Groundwater Silicon Content on Jeju Island, Korea. Water 2020, 12, 2686. [Google Scholar] [CrossRef]
- Bondì, C.; Castellini, M.; Iovino, M. Compost Amendment Impact on Soil Physical Quality Estimated from Hysteretic Water Retention Curve. Water 2022, 14, 1002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellini, M.; Di Prima, S.; Stewart, R.; Biddoccu, M.; Rahmati, M.; Alagna, V. Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid Areas. Water 2022, 14, 1830. https://doi.org/10.3390/w14121830
Castellini M, Di Prima S, Stewart R, Biddoccu M, Rahmati M, Alagna V. Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid Areas. Water. 2022; 14(12):1830. https://doi.org/10.3390/w14121830
Chicago/Turabian StyleCastellini, Mirko, Simone Di Prima, Ryan Stewart, Marcella Biddoccu, Mehdi Rahmati, and Vincenzo Alagna. 2022. "Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid Areas" Water 14, no. 12: 1830. https://doi.org/10.3390/w14121830
APA StyleCastellini, M., Di Prima, S., Stewart, R., Biddoccu, M., Rahmati, M., & Alagna, V. (2022). Advances in Ecohydrology for Water Resources Optimization in Arid and Semi-Arid Areas. Water, 14(12), 1830. https://doi.org/10.3390/w14121830