The Assessment of Climate Variables and Geographical Distribution on Residential Drinking Water Demand in Ethiopia
Abstract
:1. Introduction
Overview of Ethiopia
2. Study Area
3. Data and Methodology
3.1. Climate Data
3.2. Water Consumption Data
3.3. Methods
3.3.1. Multiple Linear Regression Model
3.3.2. Predictor Variable
Principal Component Analysis
4. Results and Discussion
4.1. Water Demand/Consumption
4.2. Seasonal Water Consumption
4.3. Per Capita Water Consumption
4.4. Annual Mean Temperature
4.5. Average Relative Humidity
4.6. Average Annual Precipitation
4.7. Correlation between Climate Variables and Monthly Water Consumption
4.8. Multiple Linear Regressions and Principal Component Analysis
4.8.1. Arba Minch
4.8.2. Debre Birhan
4.8.3. Ziway
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bates, B.; Kundzewicz, Z.; Wu, S.; Palutikof, J. Climate Change and Water; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2008. [Google Scholar]
- UN Report. The Future Is Now Science for Achieving Sustainable Development. 2019. Available online: https://sustainabledevelopment.un.org/content/documents/24797GSDR_report_2019.pdf (accessed on 5 December 2020).
- Bio Intelegence. Literature Review on the Potential Climate Change Effects on Drinking Water Resources across the EU and the Identification of Priorities among Different Types of Drinking Water Supplies. 2012. Available online: https://ec.europa.eu/environment/archives/water/adaptation/pdf/ADWICE_FinalReport.pdf (accessed on 5 June 2020).
- Yahaya, O.; Nathaniel, E.; Micheal, O. Simulation and Modelling of Climate Change Ef-fects on River Awara Flow Discharge Using WEAP Model for Effective Water Management. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2014, 2, 128–130. [Google Scholar]
- Eslamian, S.A.; Li, S.S.; Haghighat, F. A new multiple regression model for predictions of urban water use. Sustain. Cities Soc. 2016, 27, 419–429. [Google Scholar] [CrossRef]
- Syme, G.J.; Shao, Q.; Po, M.; Campbell, E. Predicting and understanding home garden water use. Landsc. Urban Plan. 2004, 68, 121–128. [Google Scholar] [CrossRef]
- Gato, S.; Jayasuriya, N.; Roberts, P. Forecasting Residential Water Demand: Case Study. J. Water Resour. Plan. Manag. 2007, 133, 309–319. [Google Scholar] [CrossRef]
- Schleich, J.; Hillenbrand, T. Determinants of residential water demand in Germany. Ecol. Econ. 2009, 68, 1756–1769. [Google Scholar] [CrossRef] [Green Version]
- Alshaikhli, M.; Aqeel, S.; Valdeolmillos, N.; Fathima, F.; Choe, P. A Multi-Linear Regression Model to Predict the Factors Affecting Water Consumption in Qatar. IOP Conf. Ser. Earth Environ. Sci. 2021, 691, 124. [Google Scholar] [CrossRef]
- Lu, S.; Gao, X.; Li, W.; Jiang, S.; Huang, L. A study on the spatial and temporal variability of the urban residential water consumption and its influencing factors in the major cities of China. Habitat Int. 2018, 78, 29–40. [Google Scholar] [CrossRef]
- Hoyos, D.; Artabe, A. Regional Differences in the Price Elasticity of Residential Water Demand in Spain. Water Resour. Manag. 2017, 31, 847–865. [Google Scholar] [CrossRef]
- Mayer, P.W.; DeOreo, W.B.; Opitz, E.M.; Kiefer, J.C.; Davis, W.Y.; Dziegielewski, B.; Nelson, J.O. Residential End Uses of Water. 1999. Available online: www.aquacraft.com (accessed on 7 March 2021).
- Balling, R.C.; Gober, P. Climate variability and residential water use in the city of Phoenix, Arizona. J. Appl. Meteorol. Climatol. 2007, 46, 1130–1137. [Google Scholar] [CrossRef]
- Sebri, M. A meta-analysis of residential water demand studies. Environ. Dev. Sustain. 2014, 16, 499–520. [Google Scholar] [CrossRef]
- Nauges, C.; Whittington, D. Estimation of water demand in developing countries: An overview. World Bank Res. Obs. 2009, 25, 263–294. [Google Scholar] [CrossRef] [Green Version]
- Zapata, O. More Water Please, It’s Getting Hot! The Effect of Climate on Residential Water Demand. Water Econ. Policy 2015, 1, 1550007. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Dooley, J.; Alkhaddar, R.M.; Abdellatif, M.; Al-Bugharbee, H.; Ortega-Martorell, S. A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks. J. Hydrol. 2018, 561, 136–145. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Rudbeck Jepsen, M.; Penuelas, J.; Wigneron, J.P.; Xiao, X.; Song, X.P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- MoWR. Ethiopian Water Sector Development Program. 2006. Available online: https://chilot.me/wp-content/uploads/2011/08/water-sector-development-program-vol-2.pdf (accessed on 9 December 2021).
- Awulachew, S.B.; International Water Management Institute. Water Resources and Irrigation Development in Ethiopia; International Water Management Institute: Colombo, Sri Lanka, 2007. [Google Scholar]
- Tarfasa, S.; Brouwer, R. Estimation of the public benefits of urban water supply improvements in Ethiopia: A choice experiment. Appl. Econ. 2013, 45, 1099–1108. [Google Scholar] [CrossRef] [Green Version]
- Anteneh, Y.; Zeleke, G.; Gebremariam, E. Valuing the water supply: Ecosystem-based potable water supply management for the Legedadie-Dire catchments, Central Ethiopia. Ecol. Process. 2019, 8, 9. [Google Scholar] [CrossRef]
- WHO. Vision 2030: The Resilience of Water Supply and Sanitation in the Face of Climate Change. 2010. Available online: https://apps.who.int/iris/handle/10665/70462 (accessed on 12 March 2021).
- Ali, M.; Terfa, A.B. State of Water Supply and Consumption in Urban Areas at Household Level: A Case Study of East Wollega Zone, Ethiopia. Br. J. Hum. Soc. Sci. 2012, 5, 2. [Google Scholar]
- Slavíková, L.; Malý, V.; Rost, M.; Petružela, L.; Vojáček, O. Impacts of Climate Variables on Residential Water Consumption in the Czech Republic. Water Resour. Manag. 2013, 27, 365–379. [Google Scholar] [CrossRef]
- Praskievicz, S.; Chang, H. Identifying the Relationships between Urban Water Consumption and Weather Variables in Seoul, Korea. Phys. Geogr. 2009, 30, 324–337. [Google Scholar] [CrossRef]
- Renwick, M.E.; Green, R.D. Do Residential Water Demand Side Management Policies Measure Up? An Analysis of Eight California Water Agencies. J. Environ. Econ. Manag. 2000, 40, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.; Schulz, C. Water demand and the urban poor: A study of the factors influencing water consumption among households in Cape Town, South Africa. S. Afr. J. Econ. 2006, 74, 593–609. [Google Scholar] [CrossRef] [Green Version]
- Lawens, M.; Mutsvangwa, C. Application of multiple regression analysis in projecting the water demand for the City of Cape Town. Water Pract. Technol. 2018, 13, 705–711. [Google Scholar] [CrossRef]
- Jadi, Z. Step by Step Explanation on Principal Component Analysis (PCA). 2021. Available online: https://builtin.com/data-science/step-step-explanation-principal-component-analysis (accessed on 8 March 2020).
- Li, S.; Zhang, Q. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. J. Hazard. Mater. 2010, 181, 1051–1058. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Gedefaw, M.; Hao, W.; Denghua, Y.; Girma, A. Variable selection methods for water demand forecasting in Ethiopia: Case study Gondar town. Cogent Environ. Sci. 2018, 4, 1537067. [Google Scholar] [CrossRef]
- Swain, S.S.; Mishra, A.; Sahoo, B.; Chatterjee, C. Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. J. Hydrol. 2020, 590, 125260. [Google Scholar] [CrossRef]
- Zang, C.; Liu, J. Trend analysis for the flows of green and blue water in the Heihe River basin, northwestern China. J. Hydrol. 2013, 502, 27–36. [Google Scholar] [CrossRef]
- MoWE. Urban Water Utilities Tariff Setting. Addis Abeba, Ethiopia. 2013. Available online: http://https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=80356§ion=4.1 (accessed on 8 June 2021).
- Mandefro, C.D.; Habtamu, K.M. Water supply and demand scenario of Dilla Town, Southern Ethiopia. Int. J. Water Resour. Environ. Eng. 2017, 9, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Rathnayaka, K.; Malano, H.; Arora, M.; George, B.; Maheepala, S.; Nawarathna, B. Prediction of urban residential end-use water demands by integrating known and unknown water demand drivers at multiple scales I: Model development. Resour. Conserv. Recycl. 2017, 117, 85–92. [Google Scholar] [CrossRef]
- Behailu, B.M.; Pietilä, P.E.; Katko, T.S. Indigenous Practices of Water Management for Sustainable Services: Case of Borana and Konso, Ethiopia. Sage Open 2016, 6, 2158244016682292. [Google Scholar] [CrossRef] [Green Version]
- Dimkić, D. Temperature Impact on Drinking Water Consumption. In Proceedings of the 4th EWaS International Conference: Valuing the Water, Carbon, Ecological Footprints of Human Activities, Online, 24–27 June 2020; MDPI: Basel, Switzerland, 2020. [Google Scholar] [CrossRef]
- Hirvonen, K.; Sohnesen, T.P.; Bundervoet, T. Impact of Ethiopia’s 2015 drought on child undernutrition. World Dev. 2020, 131, 104964. [Google Scholar] [CrossRef]
- Girma, Y.; Abebe, B. Isolation, identification and antimicrobial susceptibility of Listeria species from raw bovine milk in Debre-Birhan Town, Ethiopia. J. Zoonotic Dis. Public Health 2018, 2, 4. [Google Scholar]
- Kenney, D.S.; Goemans, C.; Klein, R.; Lowrey, J.; Reidy, K. Residential Water Demand Management: Lessons from Aurora, Colorado. J. Am. Water Resour. Assoc. 2008, 44, 192–207. [Google Scholar] [CrossRef]
- Gleick, P.H. The World’s Water Peak Water, China’s Growing Disaster, and Solutions to the World’s Water Crisis. 2009. Available online: http://www.wilsoncenter.org/event/report-launch-the-worlds-water-2008-2009-the-biennial-report-freshwater-resources (accessed on 23 May 2022).
- Ao, C.O.; Waliser, D.E.; Chan, S.K.; Li, J.L.; Tian, B.; Xie, F.; Mannucci, A.J. Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles: PBL height from GPS RO. J. Geophys. Res. Atmos. 2012, 117, D16117. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R. Water Security beyond COVID-19; Institute of Development Studies: Brighton, UK, 2020. [Google Scholar]
Months | Arba Minch | Debre Birhan | Ziway | ||||||
---|---|---|---|---|---|---|---|---|---|
Max Temp. (°C) | Precipitation (mm) | R. Humidity | Max Temp. (°C) | Precipitation (mm) | R. Humidity | Max Temp. (°C) | Precipitation (mm) | R. Humidity | |
January | 31.34 | 12.66 | 0.66 | 16.75 | 3.07 | 0.54 | 20.41 | 3.54 | 0.40 |
February | 33.23 | 22.01 | 0.63 | 18.51 | 13.57 | 0.54 | 21.76 | 26.43 | 0.35 |
March | 32.89 | 66.00 | 0.70 | 19.95 | 44.09 | 0.57 | 22.96 | 38.63 | 0.37 |
April | 30.14 | 176.34 | 0.85 | 19.81 | 52.10 | 0.65 | 23.29 | 59.13 | 0.49 |
May | 28.70 | 156.05 | 0.91 | 19.49 | 47.36 | 0.69 | 23.15 | 88.29 | 0.51 |
June | 27.79 | 86.11 | 0.89 | 19.79 | 55.30 | 0.67 | 22.57 | 85.86 | 0.58 |
July | 27.62 | 31.34 | 0.88 | 18.68 | 318.65 | 0.79 | 20.78 | 220.60 | 0.67 |
August | 28.17 | 42.40 | 0.89 | 17.63 | 279.18 | 0.86 | 20.75 | 111.51 | 0.67 |
September | 29.00 | 109.61 | 0.88 | 17.15 | 97.72 | 0.83 | 21.03 | 90.39 | 0.63 |
October | 29.95 | 132.64 | 0.88 | 16.81 | 28.10 | 0.66 | 21.05 | 22.36 | 0.50 |
November | 29.54 | 113.07 | 0.82 | 16.75 | 13.46 | 0.59 | 20.48 | 4.50 | 0.47 |
December | 30.67 | 35.98 | 0.72 | 15.97 | 1.17 | 0.54 | 19.34 | 1.61 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timotewos, M.T.; Barjenbruch, M.; Behailu, B.M. The Assessment of Climate Variables and Geographical Distribution on Residential Drinking Water Demand in Ethiopia. Water 2022, 14, 1722. https://doi.org/10.3390/w14111722
Timotewos MT, Barjenbruch M, Behailu BM. The Assessment of Climate Variables and Geographical Distribution on Residential Drinking Water Demand in Ethiopia. Water. 2022; 14(11):1722. https://doi.org/10.3390/w14111722
Chicago/Turabian StyleTimotewos, Mosisa Teferi, Matthias Barjenbruch, and Beshah M. Behailu. 2022. "The Assessment of Climate Variables and Geographical Distribution on Residential Drinking Water Demand in Ethiopia" Water 14, no. 11: 1722. https://doi.org/10.3390/w14111722
APA StyleTimotewos, M. T., Barjenbruch, M., & Behailu, B. M. (2022). The Assessment of Climate Variables and Geographical Distribution on Residential Drinking Water Demand in Ethiopia. Water, 14(11), 1722. https://doi.org/10.3390/w14111722