Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020)
Abstract
:1. Introduction
2. Material and Methods
2.1. Hai Phong Coastal Area
2.2. Data
2.3. Methods
2.3.1. Sea Level Anomaly from Tidal Gauge Station
2.3.2. The Mann–Kendall Test
2.3.3. The Sen Slope Estimator
2.3.4. Innovative Trend Analysis
3. Results
3.1. Temporal Variation of the Sea Level in Hai Phong Coastal Area for the Period 1961–2020
3.2. Mann–Kendall Trend Analysis
3.3. Innovative Trend Analysis (ITA) Method
4. Discussion
4.1. The Variation of SLR Trend
4.2. Factors Impacting the SLR Trends
4.3. Mann-Kendall and Şen’s Innovative Trend Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Fitzgerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal impacts due to sea level rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. Available online: https://www.jstor.org/stable/4299200 (accessed on 15 December 2021).
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; John, H.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas, in Climate Change 2007: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 976. [Google Scholar]
- Anthoff, D.; Nicholls, R.J.; Tol, R.S.J.; Vafeidis, A.T. Global and Regional Exposure to Large Rises in Sea-Level: A Sensitivity Analysis; (Working Paper: 96); Tyndall Centre for Climate Change Research: Norwich, UK, 2006; p. 31. [Google Scholar]
- Almeida, B.A.; Mostafavi, A. Resilience of infrastructure systems to sea-level rise in coastal areas: Impacts, adaptation measures, and implementation challenges. Sustainability 2016, 8, 1115. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 1137–1216. [Google Scholar] [CrossRef] [Green Version]
- Baede, A.P.M. Annex I glossary. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 941–954. [Google Scholar]
- Milne, G.A.; Gehrels, W.R.; Hughes, C.W.; Tamisiea, M.E. Identifying the causes of sea-level change. Nature Geosci. 2009, 2, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Svetlana, J.; Luke, P.J.; John, C.M. Coastal sea level rise around the China Seas. Glob. Planet. Chang. 2019, 171, 454–463. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Cai, R. Trends of sea level rise in the South China Sea during the 1990s: An altimetry result. Chin. Sci. Bull. 2002, 47, 582–585. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res. 1984, 20, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Tuo, Y.; Liu, J.; Gao, H.; Song, X.; Zhang, Z. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J. Hydrol. 2019, 569, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H.H.G. A simple topography-driven and calibration-free runoff generation module. Hydrol. Earth Syst. Sci. 2019, 23, 787–809. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Crow, W.T.; Duan, Z.; Wei, L.; Lu, Y. A double instrumental variable method for geophysical product error estimation. Remote Sens. Environ. 2019, 225, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Hamed, K.H. Improved finite-sample Hurst exponent estimates using rescaled range analysis. Water Resour. Res. 2007, 43, 797–809. [Google Scholar] [CrossRef]
- Öztopal, A.; Şen, Z. Innovative Trend Methodology Applications to Precipitation Records in Turkey. Water Resour. Manag. 2017, 31, 727–737. [Google Scholar] [CrossRef]
- Wu, H.; Qian, H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int. J. Climatol. 2017, 37, 2582–2592. [Google Scholar] [CrossRef]
- Kisi, O. An innovative method for trend analysis of monthly pan evaporations. J. Hydrol. 2015, 527, 1123–1129. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend Analysis in Reference Evapotranspiration using Mann-Kendall and Spearman’s rho tests in arid regions of Iran. Water Resour. Manag. 2012, 26, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Helsel, D.; Hirsch, R. Statistical Methods in Water Resources; Studies in Environmental Science Series; Elsevier: Amsterdam, The Netherlands, 1992; Volume 49, 522p. [Google Scholar]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Burn, D.H.; Hannaford, J.; Hodgkins, G.A.; Whitfield, P.H.; Thorne, R.; Marsh, T. Reference hydrologic networks II. using reference hydrologic networks to assess climate-driven changes in streamflow. Hydrol. Sci. J. 2012, 57, 1580–1593. [Google Scholar] [CrossRef] [Green Version]
- Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in floods and low flows in the United States: Impact of spatial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G.; Lombardo, F. Untenable nonstationarity: An assessment of the fitness for purpose of trend tests in hydrology. Adv. Water Resour. 2018, 111, 132–155. [Google Scholar] [CrossRef]
- Chebana, F.; Aissia, M.A.B.; Ouarda, T.B.M.J. Multivariate shift testing for hydrological variables, review, comparison and application. J. Hydrol. 2017, 548, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2017, 510, 293–298. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, H.; Yin, Y.; Hu, C.; Yin, J.; Ma, X. Interpreting rainfall anomalies using rainfall’s nonnegative nature. Geophys. Res. Lett. 2019, 46, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Wahl, T.; Jensen, J.; Frank, T.; Haigh, I.D. Improved estimates of mean sea level changes in the German Bight over the last 166 years. Ocean Dyn. 2011, 61, 701–715. [Google Scholar] [CrossRef]
- Chandler, R.E.; Scott, E.M. Statistical Methods for Trend Detection and Analysis in the Environmental Sciences; John Wiley: Chichester, UK, 2011; 392p. [Google Scholar]
- Ca, V.T. A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Viet Nam. Climate 2017, 5, 36. [Google Scholar] [CrossRef]
- Ozgenc Aksoy, A. Investigation of sea level trends and the effect of the north atlantic oscillation (NAO) on the black sea and the eastern mediterranean sea. Theor. Appl. Climatol. 2017, 129, 129–137. [Google Scholar] [CrossRef]
- Su, B.; Jiang, T.; Jin, W. Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theor. Appl. Climatol. 2006, 83, 139–151. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Lewis, Q.W.; Wu, J.; Huang, F. A framework to assess the cumulative impacts of dams on hydrological regime: A case study of the Yangtze River. Hydrol. Processes 2017, 31, 3045–3055. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Zhang, Z.; Chen, Y.D.; Liu, C.L.; Lin, H. Spatial and temporal variability of precipitation maxima during 1960–2005 in the Yangtze River basin and possible association with large-scale circulation. J. Hydrol. 2008, 353, 215–227. [Google Scholar] [CrossRef]
- Dabanlı, İ.; Şen, Z.; Yeleğen, M.; Şişman, E.; Selek, B.; Guclu, Y. Trend assessment by the innovative-Şen method. Water Resour. Manag. 2016, 30, 1–11. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Sonali, P.; Kumar, D. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Tabari, H.; Taye, M.T.; Onyutha, C.; Willems, P. Decadal analysis of river flow extremes using quantile-based approaches. Water Resour. Manag. 2017, 31, 3371–3387. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Lin, A.; Zhang, M.; Niu, Z. Innovative trend analysis of solar radiation in China during 1962–2015. Renew. Energy 2018, 119, 675–689. [Google Scholar] [CrossRef]
- Ay, M.; Kisi, O. Investigation of trend analysis of monthly total precipitation by an innovative method. Theor. Appl. Climatol. 2014, 120, 617–629. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Meisner, C. The impact of sea level rise on developing countries: A comparative analysis. Clim. Chang. 2009, 93, 379–388. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- A.D.B. Vietnam: Environment and Climate Change Assessment. 2013. Available online: https://www.adb.org/documents/viet-nam-environment-and-climate-change-assessment (accessed on 6 August 2021).
- Tuong, N.T. Sea Level Measurement and Sea Level Rise in Vietnam; Marine Hydrometeorological Centre: Hanoi, Vietnam, 2006. [Google Scholar]
- MONRE. Climate Change and Sea Level Rise Scenarios for Viet Nam; The Ministry of Natural Resources and Environment: Hanoi, Vietnam, 2016; 169p. [Google Scholar]
- Hai, N.M.; Ouillon, S.; Vinh, V.D. Sea level rise in Hai Phong coastal area (Vietnam) and its response to Enso—Evidence from tide gauge measurement of 1960–2020. Vietnam J. Earth Sci. 2022, 44, 109–126. [Google Scholar] [CrossRef]
- Vinh, V.D.; Ouillon, S. The double structure of the Estuarine Turbidity Maximum in the Cam-Nam Trieu mesotidal tropical estuary, Vietnam. Mar. Geol. 2021, 442, 106670. [Google Scholar] [CrossRef]
- Vinh, V.D.; Ouillon, S.; Uu, D.V. Estuarine Turbidity Maxima and Variations of Aggregate Parameters in the Cam-Nam Trieu Estuary, North Vietnam, in Early Wet Season. Water 2018, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Vinh, V.D.; Ouillon, S.; Thanh, T.D.; Chu, L.V. Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta. Hydrol. Earth Syst. Sci. 2014, 18, 3987–4005. [Google Scholar] [CrossRef] [Green Version]
- Vinh, V.D.; Ouillon, S.; Hai, N.M. Sea surface temperature trend analysis by Mann-Kendall test and Sen’s slope estimator: A study of the Hai Phong coastal area (Vietnam) for the period 1995–2020. Vietnam J. Earth Sci. 2022, 44, 72–91. [Google Scholar] [CrossRef]
- NOAA. 2020. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 31 December 2020).
- Theil, H. A rank-invariant method of linear and polynomial regression analysis I, II and III. Nederl. Aka. Wetensch 1950, 53, 386–392. [Google Scholar]
- Elouissi, A.; Şen, Z.; Habi, M. Algerian rainfall Innovative trend analysis and its implications to Macta watershed. Arab. J. Geosci. 2016, 9, 303. [Google Scholar] [CrossRef]
- Şen, Z. Innovative trend significance test and applications. Theor. Appl. Climatol. 2017, 127, 939–947. [Google Scholar] [CrossRef]
- White, N.J.; Church, J.A.; Gregory, J.M. Coastal and global averaged sea level rise for 1950 to 2000. Geophys. Res. Lett. 2005, 32, L01601. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Dangendorf, S.; Hay, C.; Calafat, F.M. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Chang. 2019, 9, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Jevrejeva, S.; Grinsted, A.; Moore, J.C.; Holgate, S. Nonlinear trends and multi-year cycles in sea level records. J. Geophys. Res. 2006, 111, C09012. [Google Scholar] [CrossRef] [Green Version]
- Church, J.; White, N.; Aarup, T.; Wilson, S.W.; Woodworth, P.; Domingues, C.; Hunter, J.; Lambeck, K. Understanding global sea levels: Past, present and future. Sustain. Sci. 2008, 3, 9–22. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 10 October 2021).
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Jevrejeva, S.; Moore, J.; Grinsted, A.; Woodworth, P.L. Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett. 2009, 6, L08715. [Google Scholar] [CrossRef] [Green Version]
- Nerem, R.S.; Leuliette, E.; Cazenave, A. Present-day sea-level change: A review. Comptes Rendus Geosci. 2006, 338, 1077–1083. [Google Scholar] [CrossRef]
- Pinardi, N.; Bonaduce, A.; Navarra, A.; Dobricic, S.; Oddo, P. The mean sea level equation and its application to the Mediterranean Sea. J. Clim. 2014, 27, 442–447. [Google Scholar] [CrossRef]
- Cheng, X.; Qi, Y. Trends of sea level variations in the South China Sea from merged altimetry data. Glob. Planet. Chang. 2007, 57, 371–382. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, X.; Zhou, D.; Li, J.; Zhang, W. Estimation of sea level variability in the South China Sea from satellite altimetry and tide gauge data. Adv. Space Res. 2021, 68, 523–533. [Google Scholar] [CrossRef]
- Webster, P.J.; Yang, S. Monsoon and ENSO: Selectively interactive systems. Q. J. R. Meteorol. Soc. 1992, 118, 877–926. [Google Scholar] [CrossRef]
- Barnard, P.L.; Short, A.D.; Harley, M.D.; Splinter, K.D.; Vitousek, S.; Turner, I.L. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillication. Nat. Geosci. 2015, 8, 801–808. [Google Scholar] [CrossRef]
- Becker, M.; Meyssignac, B.; Letetrel, C.; Llovel, W.; Cazenave, A.; Delcroix, T. Sea level variations at tropical Pacific islands since 1950. Glob. Planet. Chang. 2012, 80–81, 85–98. [Google Scholar] [CrossRef]
- Miles, E.R.; Spillman, C.M.; Church, J.A.; McIntosh, P.C. Seasonal prediction of global sea level anomalies using an oceanatmosphere dynamical model. Clim. Dyn. 2014, 43, 2131–2145. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Church, J.A. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 2012, 39, L21701. [Google Scholar] [CrossRef]
- Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geod. 2010, 33, 435–446. [Google Scholar] [CrossRef]
- Rong, Z.; Liu, Y.; Zong, H.; Peng, X. Long term sea level change and water mass balance in the South China Sea. J. Ocean. Univ. China 2009, 8, 327–334. [Google Scholar] [CrossRef]
- Peng, D.J.; Palanisamy, H.; Cazenave, A.; Meyssignac, B. Interannual sea level variations in the South China Sea over 1950–2009. Mar. Geod. 2013, 36, 164–182. [Google Scholar] [CrossRef]
- Genes, L.S.; Montoya, R.D.; Osorio, A.F. Coastal sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea. Cont. Shelf Res. 2021, 228, 104489. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Mao, X.Z.; Bi, H.; Yin, P. Interannual Sea level variability in the pearl river Estuary and its response to El Niño–southern oscillation. Glob. Planet. Chang. 2018, 162, 163–174. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Wang, L.; Lai, Z.; Tian, Q.; Liu, W.; Li, J. Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River basin, China during 1960–2015. J. Atmos. Sol. Terr. Phys. 2017, 164, 48–59. [Google Scholar] [CrossRef]
- Alashan, S. Combination of modified Mann-Kendall method and Şen innovative trend analysis. Eng. Rep. 2020, 2, 2020. [Google Scholar] [CrossRef]
- Harka, A.E.; Jilo, N.B.; Behulu, F. Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of innovative trend analysis method. J. Hydrol. Reg. Stud. 2021, 37, 100915. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–kendall trend test under the scaling hypothesis. J. Hydrol. (Amst) 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Storch, H. Misuses of Statistical Analysis in Climate Research; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Arab Amiri, M.; Gocić, M. Innovative trend analysis of annual precipitation in Serbia during 1946–2019. Environ. Earth Sci. 2021, 80, 777. [Google Scholar] [CrossRef]
- Güçlü, Y.S. Multiple Şen-innovative trend analyses and partial Mann-Kendall test. J. Hydrol. 2018, 566, 685–704. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Ahmed, A.N.; Fai, C.M.; Afan, H.A.; Sefelnasr, A.; Sherif, M.; EI-Shefie, A. Application of non-parametric approaches to identify trend in streamflow during 1976–2007 (Naula watershed). Alex. Eng. J. 2020, 59, 1595–1606. [Google Scholar] [CrossRef]
Months | Periods | |||||||
---|---|---|---|---|---|---|---|---|
1961–2020 | 1961–1980 | 1981–2000 | 2001–2020 | |||||
p-Value | Slope | p-Value | Slope | p-Value | Slope | p-Value | Slope | |
1 | 0.00000 | 3.69 | 0.04781 | 8.17 | 0.58126 | 0.77 ** | 0.00025 | 9.20 |
2 | 0.00000 | 3.78 | 0.00255 | 10.36 | 0.41730 | 2.37 ** | 0.01248 | 7.03 |
3 | 0.00000 | 3.99 | 0.00165 | 12.95 | 0.06441 | 4.03 * | 0.00708 | 7.7 |
4 | 0.00000 | 3.92 | 0.00255 | 11.47 | 0.45554 | 1.67 ** | 0.00708 | 7.29 |
5 | 0.00000 | 3.86 | 0.00041 | 13.91 | 0.16298 | 3.51 ** | 0.01496 | 5.06 |
6 | 0.00000 | 3.00 | 0.00255 | 10.38 | 0.82034 | −0.69 ** | 0.00582 | 4.59 |
7 | 0.00000 | 3.00 | 0.00859 | 10.81 | 0.87113 | 0.09 ** | 0.01786 | 4.87 |
8 | 0.00000 | 3.03 | 0.00255 | 11.87 | 0.02518 | 8.49 | 0.11189 | 3.04 ** |
9 | 0.00001 | 2.68 | 0.02518 | 12.16 | 0.49566 | 1.56 ** | 0.00255 | 7.20 |
10 | 0.00000 | 3.55 | 0.00105 | 9.89 | 0.02518 | 8.49 | 0.00476 | 8.11 |
11 | 0.00000 | 3.63 | 0.00019 | 10.63 | 0.77029 | 1.55 ** | 0.00009 | 6.98 |
12 | 0.00000 | 3.70 | 0.02518 | 8.49 | 0.08552 | 5.96 * | 0.01786 | 5.79 |
Year | 0.00000 | 3.38 | 0.0002 | 10.33 | 0.08551 | 2.70 * | 0.00015 | 7.16 |
Months/Time | Periods | |||||||
---|---|---|---|---|---|---|---|---|
1961–2020 | 1961–1980 | 1981–2000 | 2001–2020 | |||||
s | CL | s | CL | s | CL | s | CL | |
1 | 3.25 | ±0.64 | 9.91 | ±2.76 | −1.14 ** | ±2.51 | 8.81 | ±1.20 |
2 | 3.26 | ±0.50 | 10.54 | ±2.97 | 0.67 ** | ±1.62 | 9.03 | ±3.33 |
3 | 3.53 | ±0.48 | 12.99 | ±5.43 | 1.93 * | ±1.78 | 8.59 | ±1.89 |
4 | 3.59 | ±0.56 | 12.63 | ±4.61 | 0.82 * | ±0.78 | 7.19 | ±2.65 |
5 | 3.65 | ±0.75 | 12.96 | ±3.92 | 2.89 | ±2.41 | 6.00 | ±2.19 |
6 | 2.57 | ±0.55 | 10.84 | ±3.42 | −3.22 ** | ±1.40 | 5.24 | ±0.80 |
7 | 2.84 | ±0.69 | 10.06 | ±0.92 | 0.61 ** | ±1.26 | 6.27 | ±0.43 |
8 | 2.48 | ±0.66 | 11.49 | ±2.15 | 8.12 | ±2.16 | 3.94 | ±1.80 |
9 | 2.59 | ±0.70 | 11.08 | ±2.31 | 2.96 | ±1.93 | 9.08 | ±1.53 |
10 | 3.14 | ±0.75 | 12.69 | ±2.58 | 8.12 | ±2.16 | 9.39 | ±2.59 |
11 | 2.69 | ±0.52 | 8.97 | ±2.32 | −1.00 ** | ±3.13 | 7.58 | ±0.49 |
12 | 3.37 | ±0.71 | 8.12 | ±2.16 | 2.40 ** | ±3.46 | 7.42 | ±3.03 |
Year | 3.08 | ±0.44 | 11.02 | ±1.45 | 0.50 ** | ±0.85 | 7.38 | ±1.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.M.; Ouillon, S.; Vu, V.D. Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020). Water 2022, 14, 1709. https://doi.org/10.3390/w14111709
Nguyen HM, Ouillon S, Vu VD. Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020). Water. 2022; 14(11):1709. https://doi.org/10.3390/w14111709
Chicago/Turabian StyleNguyen, Hai Minh, Sylvain Ouillon, and Vinh Duy Vu. 2022. "Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020)" Water 14, no. 11: 1709. https://doi.org/10.3390/w14111709
APA StyleNguyen, H. M., Ouillon, S., & Vu, V. D. (2022). Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020). Water, 14(11), 1709. https://doi.org/10.3390/w14111709