Geochemical Partitioning of Heavy Metals and Metalloids in the Ecosystems of Abandoned Mine Sites: A Case Study within the Moscow Brown Coal Basin
Abstract
:1. Introduction
2. Materials and Methods
- F1 (exchangeable): weakly bound acid-soluble (water-soluble and bounded with carbonates and exchangeable ions).
- F2 (complex): bound with complexes (predominantly, fulvate and humate substances).
- F4 (residual): residual mineral fraction calculated as a difference between the total content of the chemical elements and the concentration of the mobile fractions F1 + F2 + F3.
3. Results and Discussion
3.1. Geochemical Partitioning of Elements in Surface Waters
3.2. Geochemical Partitioning of Elements in Soils
3.2.1. Physico-Chemical Properties
3.2.2. Special Differentiation
3.2.3. Extractability
3.3. Geochemical Partitioning of Elements in Plants
3.4. Relationships between the Chemical Composition of Surface Waters, Soils, and Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, V.; Sinha, S.K.; Das, N.C.; Panigrahi, D.C. Sustainable mining metrics en route a coal mine case study. J. Clean. Prod. 2020, 268, 122122. [Google Scholar] [CrossRef]
- Ashfaq, M.; Lal, M.H.; Moghal, A.A.B.; Murthy, V.R. Carbon Footprint Analysis of Coal Gangue in Geotechnical Engineering Applications. Indian Geotech. J. 2020, 50, 646–654. [Google Scholar] [CrossRef]
- Robles-Arenas, V.M.; Rodríguez, R.; García, C.; Manteca, J.I.; Candela, L. Sulphide-mining impacts in the physical environment: Sierra de Cartagena-La Unión (SE Spain) case study. Environ. Geol. 2006, 51, 47–64. [Google Scholar] [CrossRef]
- Kislitsyna, V.V.; Surzhikov, D.V.; Likontseva, Y.S.; Golikov, R.A.; Staiger, V.A. The impact of air pollution during the liquidation and recultivation of mine workings on health problems risk of the population in an industrial city. Russ. J. Occup. Health Ind. Ecol. 2021, 61, 197–201. [Google Scholar] [CrossRef]
- Gao, J.; Guan, C.H.; Zhang, B. China’s CH4 emissions from coal mining: A review of current bottom-up inventories. Sci. Total Environ. 2020, 725, 138295. [Google Scholar] [CrossRef]
- Kopytov, A.I.; Manakov, Y.A.; Kupriyanov, A.N. Coal mining and issued of ecosystem preservation in Kuzbass. Ugol 2017, 3, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Zenkov, I.V.; Nefedov, N.B.; Morin, A.S.; Kiryushina, E.V.; Vokin, V.N.; Veretenova, T.A.; Kondrashov, P.M.; Pavlova, P.L.; Brezhnev, R.V. Land remediation technology in the development of coal deposits in the Northern Regions of Russia. Ugol 2020, 4, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Becquer, T.; Dai, J.; Quantin, C.; Benedetti, M.F. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils. Environ. Pollut. 2009, 157, 1249–1257. [Google Scholar] [CrossRef]
- Arroyo, R.R.Y.; Siebe, C. Weathering of sulphide minerals and trace element speciation in tailings of various ages in the Guanajuato mining district, Mexico. Catena 2007, 71, 497–506. [Google Scholar] [CrossRef]
- Lu, S.; Teng, Y.; Wang, Y.; Wu, J.; Wang, J. Research on the ecological risk of heavy metals in the soil around a Pb–Zn mine in the Huize County, China. Chin. J. Geochem. 2015, 34, 540–549. [Google Scholar] [CrossRef]
- Leonard, R.; Zulfikar, R.; Stansbury, R. Coal mining and lung disease in the 21st century. Curr. Opin. Pulm. Med. 2020, 26, 135–141. [Google Scholar] [CrossRef]
- Punia, A. Role of temperature, wind, and precipitation in heavy metal contamination at copper mines: A review. Environ. Sci. Pollut. Res. 2021, 28, 4056–4072. [Google Scholar] [CrossRef]
- Anawar, H.M. Sustainable rehabilitation of mining waste and acid mine drainage using geochemistry, mine type, mineralogy, texture, ore extraction and climate knowledge. J. Environ. Manag. 2015, 158, 111–121. [Google Scholar] [CrossRef]
- Niu, A.; Lin, C. Managing soils of environmental significance: A critical review. J. Hazard. Mater. 2021, 417, 125990. [Google Scholar] [CrossRef]
- Semenkov, I.N.; Klink, G.V.; Lebedeva, M.P.; Krupskaya, V.V.; Chernov, M.S.; Dorzhieva, O.V.; Kazinskiy, M.T.; Sokolov, V.N.; Zavadskaya, A.V. The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula. Sci. Rep. 2021, 11, 11077. [Google Scholar] [CrossRef]
- Tarazanov, I.G.; Gubanov, D.A. Russia’s coal industry performance for January–December, 2019. Ugol 2020, 3, 27–43. [Google Scholar] [CrossRef]
- Gavrilenko, A.M. Ministry of Energy of the Russian Federation. Available online: https://minenergo.gov.ru/node/433 (accessed on 24 December 2021).
- Scripta Technica, Inc. Nina Petrovna Solntseva (1935–2004). Eurasian Soil Sci. 2005, 38, 792–793. Available online: http://explore.bl.uk/primo_library/libweb/action/display.do?tabs=moreTab&ct=display&fn=search&doc=ETOCRN173423523&indx=1&recIds=ETOCRN173423523&recIdxs=0&elementId=0&renderMode=poppedOut&displayMode=full&frbrVersion=&frbg=&&dscnt=0&vl(2084770704UI0)=any&scp.scps=scope%3A%28BLCONTENT%29&tb=t&vid=BLVU1&mode=Basic&srt=rank&tab=local_tab&dum=true&vl(freeText0)=nina%20Petrovna%20Solntseva%20%281935–2004%29&dstmp=1641310416353 (accessed on 24 December 2021).
- Solntseva, N.P. A system of geographical studies to conserve the quality of the environment (exemplified by the Moscow region). Vestn.-Mosk. Univ. Seriya Geogr. 1985, 1, 31–37. [Google Scholar]
- Solntseva, N.P.; Rubilina, N.Y.; Gerasimova, M.I.; Alistratov, S.V. Alteration of the morphology of leached Chernozems in a coal-mining district. Eurasian Soil Sci. 1992, 24, 46–58. [Google Scholar]
- Nikiforova, E.M.; Solntseva, N.P. Technogenic flows of sulphur in humid landscapes of coal-mining areas. Vestn.-Mosk. Univ. Seriya Geogr. 1986, 3, 52–59. [Google Scholar]
- Perel’man, A.I. Geochemical barriers: Theory and practical applications. Appl. Geochem. 1986, 1, 669–680. [Google Scholar] [CrossRef]
- Glazovskaya, M.A. Geochemical barriers in plain soils, their typology, functional characteristics and environmental importance. Vestn. Mosk. Univ. Seriya 5 Geogr. 2012, 1, 8–14. [Google Scholar]
- Alekseenko, A.V. Geochemical Barriers for Soil Protection in Mining Areas. In Assessment, Restoration and Reclamation of Mining Influenced Soils; Bech, J., Bini, C., Pashkevich, M.A., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 255–274. ISBN 9780128095881. [Google Scholar]
- Sharapova, A.V.; Semenkov, I.N.; Lednev, S.A.; Karpachevsky, A.M.; Koroleva, T.V. Self-development of mining landscapes of the old coal mining district in tula region. Ecol. Ind. Russ. 2017, 21, 54–59. [Google Scholar] [CrossRef]
- Sharapova, A.V.; Semenkov, I.N.; Lednev, S.A.; Karpachevsky, A.M.; Koroleva, T.V. Biochemical potential of self-development of post-technogenic mining-industrial geocomlexes of the Moscow coal basin. Ugol 2020, 10, 56–61. [Google Scholar] [CrossRef]
- Lednev, S.A.; Sharapova, A.V.; Semenkov, I.N.; Kaepachevsky, A.M.; Koroleva, T.V. Plant successions on coal mines’ waste piles in forest-steppe of the Tula oblast. Izv. Ross. Akad. Nauk. Seriya Geogr. 2020, 84, 239–245. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K.; Singh, A.K. Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Sci. Total Environ. 2017, 583, 153–162. [Google Scholar] [CrossRef]
- Madejón, P.; Caro-Moreno, D.; Navarro-Fernández, C.M.; Rossini-Oliva, S.; Marañón, T. Rehabilitation of waste rock piles: Impact of acid drainage on potential toxicity by trace elements in plants and soil. J. Environ. Manag. 2021, 280, 111848. [Google Scholar] [CrossRef] [PubMed]
- Chang Kee, J.; Gonzales, M.J.; Ponce, O.; Ramírez, L.; León, V.; Torres, A.; Corpus, M.; Loayza-Muro, R. Accumulation of heavy metals in native Andean plants: Potential tools for soil phytoremediation in Ancash (Peru). Environ. Sci. Pollut. Res. 2018, 25, 33957–33966. [Google Scholar] [CrossRef]
- Karaca, O.; Cameselle, C.; Reddy, K.R. Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Rev. Environ. Sci. Biotechnol. 2018, 17, 205–228. [Google Scholar] [CrossRef]
- Yang, S.X.; Liao, B.; Yang, Z.H.; Chai, L.Y.; Li, J.T. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China. Sci. Total Environ. 2016, 562, 427–434. [Google Scholar] [CrossRef]
- Krechetov, P.; Kostin, A.; Chernitsova, O.; Terskaya, E. Environmental changes due to wet disposal of wastes from coal-fired heat power plant: A case study from the Tula Region, Central Russia. Appl. Geochem. 2019, 105, 105–113. [Google Scholar] [CrossRef]
- Krechetov, P.; Chernitsova, O.; Sharapova, A.; Terskaya, E. Technogenic geochemical evolution of chernozems in the sulfur coal mining areas. J. Soils Sediments 2019, 19, 3139–3154. [Google Scholar] [CrossRef]
- Golosov, V.; Panin, A. Century-scale stream network dynamics in the Russian Plain in response to climate and land use change. Catena 2006, 66, 74–92. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Volkova, E.M.; Lebedeva, M.V.; Yamalov, S.M. Vegetation dynamics of Kulikovo Field agrosteppes: The contribution of environmental factors. IOP Conf. Ser. Earth Environ. Sci. 2021, 817, 012112. [Google Scholar] [CrossRef]
- Arkhipova, M.V. The Current State of Deciduous Forests of the Central Russian Upland (Based on Cartographic Materials and Remote Sensing Data); Lomonosov Moscow State University: Moscow, Russia, 2014. [Google Scholar]
- Sharapova, A.V.; Semenkov, I.N.; Karpachevsky, A.M.; Lednev, S.A.; Koroleva, T.V. Morphological and chemical properties of soils within geological complexes affected by sulfuric acid in forest-steppe of the Central Russian Upland (Russia). In Proceedings of the IOP Conference Series: Earth and Environmental Science, The VIII Congress of the Dokuchaev Soil Science Society, Syktyvkar, Komi Republic, Russia, 19–24 July 2021; p. 012013. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2014 International Soil Classification System; FAO: Rome, Italy, 2015; ISBN 9789251083697. [Google Scholar]
- FAO. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2006; ISBN 9251054908. [Google Scholar]
- van Reeuwijk, L.P. Procedures for Soil Analysis, 3rd ed.; Reeuwijk, L.P., Ed.; ISRIC FAO: Wageningen, The Netherlands, 2002. [Google Scholar]
- Minkina, T.M.; Mandzhieva, S.S.; Burachevskaya, M.V.; Bauer, T.V.; Sushkova, S.N. Method of determining loosely bound compounds of heavy metals in the soil. MethodsX 2018, 5, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Minkina, T.M.; Motuzova, G.V.; Nazarenko, O.G.; Kryshchenko, V.S.; Mandzhieva, S.S. Forms of heavy metal compounds in soils of the steppe zone. Eurasian Soil Sci. 2008, 41, 708–716. [Google Scholar] [CrossRef]
- Semenkov, I.N.; Koroleva, T.V. The spatial distribution of fractions and the total content of 24 chemical elements in soil catenas within a small gully’s catchment area in the Trans Urals, Russia. Appl. Geochem. 2019, 106, 1–6. [Google Scholar] [CrossRef]
- Ladonin, D.V. Heavy metal compounds in soils: Problems and methods of study. Eurasian Soil Sci. 2002, 35, 605–613. [Google Scholar]
- Diatta, J.; Andrzejewska, A.; Rafałowicz, T. Reactivity, exchangeability and solubility of heavy metals in various soil materials—Concepts and evaluation. Eurasian Soil Sci. 2019, 52, 853–864. [Google Scholar] [CrossRef]
- Solov’ev, G.A. The use of complex extracts to determine the available forms of trace elements in soils. In Monitoring of Background Environmental Pollution; Izrael, Y.A., Rovinsky, F.Y., Eds.; Gidrometeoizdat: Leningrad, Russia, 1989; pp. 216–227. [Google Scholar]
- Minkina, T.M.; Motuzova, G.V.; Nazarenko, O.G.; Kryshchenko, V.S.; Mandzhieva, S.S. Combined approach for fractioning metal compounds in soils. Eurasian Soil Sci. 2008, 41, 1171–1179. [Google Scholar] [CrossRef]
- Lee, P.K.; Kang, M.J.; Choi, S.H.; Touray, J.C. Sulfide oxidation and the natural attenuation of arsenic and trace metals in the waste rocks of the abandoned Seobo tungsten mine, Korea. Appl. Geochem. 2005, 20, 1687–1703. [Google Scholar] [CrossRef]
- Vasil’eva, I.E.; Shabanova, E.V. Catalogue of Certified Reference Materials of Natural and Man-Made Media Compositions; A.P. Vinogradov Institute of Geochemistry SB RAS: Irkutsk, Russia, 2017. [Google Scholar]
- Samczyński, Z.; Dybczyński, R.S.; Polkowska-Motrenko, H.; Chajduk, E.; Pyszynska, M.; Danko, B.; Czerska, E.; Kulisa, K.; Doner, K.; Kalbarczyk, P. Two new reference materials based on tobacco leaves: Certification for over a dozen of toxic and essential elements. Sci. World J. 2012. [Google Scholar] [CrossRef] [Green Version]
- Kasimov, N.S. Lateral migration of microelements in the steppe and desert landscapes. Vestn. Mosk. Univ. Seriya Geogr. 1981, 5, 69–74. [Google Scholar]
- Kasimov, N.S.; Perel’man, A.I. The geochemistry of soils. Eurasian Soil Sci. 1992, 24, 59–76. [Google Scholar]
- Polynov, B.B. The Cycle of Weathering; T. Murby & Co: London, UK, 1937. [Google Scholar]
- Kovalevskii, A.L. Biogeochemical prospecting for ore deposits in the U.S.S.R. J. Geochem. Explor. 1984, 21, 63–72. [Google Scholar] [CrossRef]
- Glazovskaya, M.A.; Kasimov, N.S. Landscape geochemical foundations of background monitoring of environment. Vestn.-Mosk. Univ. Seriya Geogr. 1987, 1, 11–17. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK; New York, NY, USA, 2015; ISBN 9781482212815. [Google Scholar]
- Vozhdaeva, M.Y.; Kholova, A.R.; Vagner, E.V.; Trukhanova, N.V.; Melnitskiy, I.A.; Mullodzhanov, T.T.; Kantor, E.A. Changes in the indicators of chemical safety of drinking water in Ufa during its transportation to consumers. Gig. Sanit. 2021, 100, 396–405. [Google Scholar] [CrossRef]
- Koroleva, T.V.; Semenkov, I.N.; Sharapova, A.V.; Krechetov, P.P.; Lednev, S.A. Ecological consequences of space rocket accidents in Kazakhstan between 1999 and 2018. Environ. Pollut. 2021, 268, 115711. [Google Scholar] [CrossRef] [PubMed]
- Semenkov, I.N.; Koroleva, T.V. International environmental regulation of chemical element content in soils: Guidelines and schemes. Eurasian Soil Sci. 2019, 52, 1289–1297. [Google Scholar] [CrossRef]
- Semenkov, I.N.; Koroleva, T.V. Guideline Values for the Content of Chemical Elements in Soils of Functional Zones at Cities (Review). Eurasian Soil Sci. 2022; 55, in press. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z.M.; Pelc, A.; Trembaczowski, A.; Dołęgowska, S.; Michalik, A. Trace elements and stable sulfur isotopes in plants of acid mine drainage area: Implications for revegetation of degraded land. J. Environ. Sci. 2020, 94, 128–136. [Google Scholar] [CrossRef]
- Semenkov, I.N.; Kasimov, N.S.; Terskaya, E.V. Vertical geochemical structure of soils of the forest-steppe loamy catenas of a balka water catchment area in the centre of the Srednerusskaya upland. Vestn. Mosk. Univ. Seriya 5 Geogr. 2015, 5, 42–53. [Google Scholar]
- Semenkov, I.N.; Aseeva, E.N.; Terskaya, E.V. Geochemical structure of forest-steppe catenas of a balka drainage area in the Upa River basin. Vestn. Mosk. Univ. Seriya 5 Geogr. 2013, 6, 68–75. [Google Scholar]
- Shcheglov, D.I.; Gorbunova, N.S.; Semenova, L.A.; Khatuntseva, O.A. Microelements in soils of conjugated landscapes with different degrees of hydromorphysm in the Kamennaya steppe. Eurasian Soil Sci. 2013, 46, 254–261. [Google Scholar] [CrossRef]
- Dubovik, D.V.; Dubovik, E.V. Heavy metals in ordinary chernozems on slopes of different gradients and aspects. Eurasian Soil Sci. 2016, 49, 33–44. [Google Scholar] [CrossRef]
- Protasova, N.A.; Shcherbakov, A.P. Microelemental composition of zonal soils in the central chernozemic region. Eurasian Soil Sci. 2004, 37, 40–48. [Google Scholar]
- Lisetskii, F.; Stolba, V.F.; Marinina, O. Indicators of agricultural soil genesis under varying conditions of land use, Steppe Crimea. Geoderma 2015, 239–240, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Solntseva, N.P.; Gerasimova, M.I.; Rubilina, N.Y. Morphogenetic analysis of soils transformed by technology. Sov. Soil Sci. 1991, 23, 87–94. [Google Scholar]
- Bazykina, G.S.; Ovechkin, S.V. The influence of climate cycles on the water regime and carbonate profile in chernozems of Central European Russia and adjacent territories. Eurasian Soil Sci. 2016, 49, 437–449. [Google Scholar] [CrossRef]
- Goryachkin, S.V.; Tonkonogov, V.D.; Gerasimova, M.I.; Lebedeva, I.I.; Shishov, L.L.; Targulian, V.O. Changing Concepts of Soil and Soil Classification in Russia. In Soil Classification; CRC Press: Boca Raton, FL, USA, 2019; pp. 187–199. ISBN 9780429125386. [Google Scholar]
- Rozhkov, V.A. Soils and the soil cover as witnesses and indicators of global climate change. Eurasian Soil Sci. 2009, 42, 118–128. [Google Scholar] [CrossRef]
- Lebedeva, I.I.; Tonkonogov, V.D.; Gerasimova, M.J. Geographical aspects of soil memory in mesomorphic soils of some Eurasian regions. Eurasian Soil Sci. 2002, 35, 30–41. [Google Scholar]
- Lin, Z.; Herbert, R.B. Heavy metal retention in secondary precipitates from a mine rock dump and underlying soil, Dalarna, Sweden. Environ. Geol. 1997, 33, 1–12. [Google Scholar] [CrossRef]
- Salisbury, A.B.; Reinfelder, J.R.; Gallagher, F.J.; Grabosky, J.C. Long-term stability of trace element concentrations in a spontaneously vegetated urban brownfield with anthropogenic soils. Soil Sci. 2017, 182, 69–81. [Google Scholar] [CrossRef]
- Gennadiev, A.N.; Geptner, A.R.; Zhidkin, A.P.; Chernyanskii, S.S.; Pikovskii, Y.I. Exothermic and endothermic soils of Iceland. Eurasian Soil Sci. 2007, 40, 595–607. [Google Scholar] [CrossRef]
- Gol’dfarb, I.L. Effect of hydrothermal activity on the conditions of pedogenesis and soil morphology (by the example of Kamchatka). Eurasian Soil Sci. 1996, 29, 1319–1324. [Google Scholar]
- Kostyuk, D.N.; Gennadiev, A.N. Soils and the soil cover of the Valley of Geysers. Eurasian Soil Sci. 2014, 47, 529–539. [Google Scholar] [CrossRef]
- Othmani, M.A.; Souissi, F.; Durães, N.; Abdelkader, M.; da Silva, E.F. Assessment of metal pollution in a former mining area in the NW Tunisia: Spatial distribution and fraction of Cd, Pb and Zn in soil. Environ. Monit. Assess. 2015, 187, 523. [Google Scholar] [CrossRef]
- Sommer, M.; Schlichting, E. Archetypes of catenas in respect to matter a concept for structuring and grouping catenas. Geodrma 1997, 76, 1–33. [Google Scholar] [CrossRef]
- Semenkov, I.N.; Kasimov, N.S.; Terskaya, E.V. Lateral distribution of metal forms in tundra, taiga and forest steppe catenae of the east European plain. Vestn. Mosk. Univ. Seriya 5 Geogr. 2016, 3, 29–39. [Google Scholar]
- Semenkov, I.; Konyushkova, M. Geochemical partition of chemical elements in Kastanozems and Solonetz in a local catchment within a semiarid landscape of SW Russia. Catena 2022, 210, 105869. [Google Scholar] [CrossRef]
- Herbert, R.B. Partitioning of heavy metals in podzol soils contaminated by mine drainage waters, Dalarna, Sweden. Water Air Soil Pollut. 1997, 96, 39–59. [Google Scholar] [CrossRef]
- Armienta, M.A.; Mugica, V.; Reséndiz, I.; Arzaluz, M.G. Arsenic and metals mobility in soils impacted by tailings at Zimapán, México. J. Soils Sediments 2016, 16, 1267–1278. [Google Scholar] [CrossRef]
- Kasimov, N.S.; Samonova, O.A.; Aseeva, E.N. Background soil-geochemical structure of Privolzhskaya upland forest-steppe. Pochvovedenie 1992, 8, 5–21. [Google Scholar]
- Semenkov, I.; Yakushev, A. Dataset on heavy metal content in background soils of the three gully catchments at Western Siberia. Data Br. 2019, 26, 104496. [Google Scholar] [CrossRef]
- Semenkov, I.; Krupskaya, V.; Klink, G. Data on the concentration of fractions and the total content of chemical elements in catenae within a small catchment area in the Trans Urals, Russia. Data Br. 2019, 25, 104224. [Google Scholar] [CrossRef]
- Yang, S.X.; Liao, B.; Li, J.T.; Guo, T.; Shu, W.S. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland. Chemosphere 2010, 80, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Shopina, O.V.; Semenkov, I.N.; Paramonova, T.A. The accumulation of heavy metals and 137Cs in plant products grown on radioactively contaminated chernozems of Tula oblast. Ecol. Ind. Russ. 2020, 24, 48–53. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Semenkov, I.; Klink, G.; Tarigholizadeh, S.; Sushkova, S. Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environ. Geochem. Health 2021, 43, 1629–1654. [Google Scholar] [CrossRef]
- Mleczek, M.; Goliński, P.; Krzesłowska, M.; Gąsecka, M.; Magdziak, Z.; Rutkowski, P.; Budzyńska, S.; Waliszewska, B.; Kozubik, T.; Karolewski, Z.; et al. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environ. Sci. Pollut. Res. 2017, 24, 22183–22195. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.R.; Islam, R.; Anh Tran, T.K.; Van, D.L.; Rahman, M.M.; Griffin, A.S.; Yu, R.M.K.; MacFarlane, G.R. Global patterns of accumulation and partitioning of metals in halophytic saltmarsh taxa: A phylogenetic comparative approach. J. Hazard. Mater. 2021, 414, 125515. [Google Scholar] [CrossRef]
- Martins, M.; Faleiro, M.L.; Barros, R.J.; Veríssimo, A.R.; Barreiros, M.A.; Costa, M.C. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J. Hazard. Mater. 2009, 166, 706–713. [Google Scholar] [CrossRef]
- Kasimov, N.S.; Lychagin, M.Y.; Chalov, R.S.; Shinkareva, G.L. Paragenetic associations of chemical elements in landscapes. Vestn. Mosk. Univ. Seriya 5 Geogr. 2019, 6, 20–28. [Google Scholar]
- Gagnon, V.; Rodrigue-Morin, M.; Tardif, A.; Beaudin, J.; Greer, C.W.; Shipley, B.; Bellenger, J.P.; Roy, S. Differences in elemental composition of tailings, soils, and plant tissues following five decades of native plant colonization on a gold mine site in Northwestern Québec. Chemosphere 2020, 250, 126243. [Google Scholar] [CrossRef]
- Alvarenga, P.; Simões, I.; Palma, P.; Amaral, O.; Matos, J.X. Field study on the accumulation of trace elements by vegetables produced in the vicinity of abandoned pyrite mines. Sci. Total Environ. 2014, 470–471, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Perlatti, F.; Ferreira, T.O.; da Costa Roberto, F.A.; Romero, R.E.; Sartor, L.R.; Otero, X.L. Trace metal/metalloid concentrations in waste rock, soils and spontaneous plants in the surroundings of an abandoned mine in semi-arid NE-Brazil. Environ. Earth Sci. 2015, 74, 5427–5441. [Google Scholar] [CrossRef]
- Bartuska, A.M.; Ungar, I.A. Elemental concentrations in plant tissues as influenced by low pH soils. Plant Soil 1980, 55, 157–161. [Google Scholar] [CrossRef]
- Durães, N.; Bobos, I.; Ferreira da Silva, E.; Dekayir, A. Copper, zinc and lead biogeochemistry in aquatic and land plants from the Iberian Pyrite Belt (Portugal) and north of Morocco mining areas. Environ. Sci. Pollut. Res. 2015, 22, 2087–2105. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Nabais, C.; Magalhães, M.C.F. Trace element distribution in soils developed on gossan mine wastes and Cistus ladanifer L. tolerance and bioaccumulation. J. Geochem. Explor. 2012, 123, 45–51. [Google Scholar] [CrossRef]
- Alekseenko, V.A.; Bech, J.; Alekseenko, A.V.; Shvydkaya, N.V.; Roca, N. Environmental impact of disposal of coal mining wastes on soils and plants in Rostov Oblast, Russia. J. Geochem. Explor. 2018, 184, 261–270. [Google Scholar] [CrossRef]
- Luo, L.; Chu, B.; Liu, Y.; Wang, X.; Xu, T.; Bo, Y. Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine. Environ. Sci. Pollut. Res. 2014, 21, 8242–8260. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, X.; Hou, L.; Shao, A. Impact of the Coal Mining on the Spatial Distribution of Potentially Toxic Metals in Farmland Tillage Soil. Sci. Rep. 2018, 8, 14925. [Google Scholar] [CrossRef]
- Solntseva, N.P. Trends in soil evolution under technogenic impacts. Eurasian Soil Sci. 2002, 35, 6–16. [Google Scholar]
- Punanova, S.A.; Shpirt, M.Y. Ecological Consequences of the Development of Shale Formations Containing Toxic Elements. Solid Fuel Chem. 2018, 52, 396–405. [Google Scholar] [CrossRef]
- Kasimov, N.S.; Gavrilova, I.P.; Gerasimova, M.I.; Bogdanova, M.D. New landscapes for resource-oriented geographical investigations. Vestn. Mosk. Univ. Seriya 5 Geogr. 2009, 1, 30–37. [Google Scholar]
- Abdrakhmanov, R.F.; Akhmetov, R.M. Hydrogeochemistry at mining districts. Geochem. Int. 2016, 54, 795–806. [Google Scholar] [CrossRef]
- Yang, C.; Lu, G.; Chen, M.; Xie, Y.; Guo, C.; Reinfelder, J.; Yi, X.; Wang, H.; Dang, Z. Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China. Geoderma 2016, 281, 21–29. [Google Scholar] [CrossRef]
- Perotti, M.; Petrini, R.; D’Orazio, M.; Ghezzi, L.; Giannecchini, R.; Vezzoni, S. Thallium and Other Potentially Toxic Elements in the Baccatoio Stream Catchment (Northern Tuscany, Italy) Receiving Drainages from Abandoned Mines. Mine Water Environ. 2018, 37, 431–441. [Google Scholar] [CrossRef]
- Lago-Vila, M.; Arenas-Lago, D.; Andrade, L.; Vega, F.A. Phytoavailable content of metals in soils from copper mine tailings (Touro mine, Galicia, Spain). J. Geochem. Explor. 2014, 147, 159–166. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Tripathy, S.; Panigrahi, M.K.; Equeenuddin, S.M. Geochemical characterization of coal and waste rocks from a high sulfur bearing coalfield, India: Implication for acid and metal generation. J. Geochem. Explor. 2014, 145, 135–147. [Google Scholar] [CrossRef]
- Álvarez-Valero, A.M.; Sáez, R.; Pérez-López, R.; Delgado, J.; Nieto, J.M. Evaluation of heavy metal bio-availability from Almagrera pyrite-rich tailings dam (Iberian Pyrite Belt, SW Spain) based on a sequential extraction procedure. J. Geochem.Explor. 2009, 102, 87–94. [Google Scholar] [CrossRef]
- Maia, F.; Pinto, C.; Waerenborgh, J.C.; Gonçalves, M.A.; Prazeres, C.; Carreira, O.; Sério, S. Metal partitioning in sediments and mineralogical controls on the acid mine drainage in Ribeira da água Forte (Aljustrel, Iberian Pyrite Belt, Southern Portugal). Appl. Geochem. 2012, 27, 1063–1080. [Google Scholar] [CrossRef]
- García-Lorenzo, M.L.; Pérez-Sirvent, C.; Molina-Ruiz, J.; Martínez-Sánchez, M.J. Mobility indices for the assessment of metal contamination in soils affected by old mining activities. J. Geochem. Explor. 2014, 147, 117–129. [Google Scholar] [CrossRef]
- Pérez-López, R.; Álvarez-Valero, A.M.; Nieto, J.M.; Sáez, R.; Matos, J.X. Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Appl. Geochem. 2008, 23, 3452–3463. [Google Scholar] [CrossRef]
- Romero, F.M.; Prol-Ledesma, R.M.; Canet, C.; Alvares, L.N.; Pérez-Vázquez, R. Acid drainage at the inactive Santa Lucia mine, western Cuba: Natural attenuation of arsenic, barium and lead, and geochemical behavior of rare earth elements. Appl. Geochem. 2010, 25, 716–727. [Google Scholar] [CrossRef]
- Montes-Avila, I.; Espinosa-Serrano, E.; Castro-Larragoitia, J.; Lázaro, I.; Cardona, A. Chemical mobility of inorganic elements in stream sediments of a semiarid zone impacted by ancient mine residues. Appl. Geochem. 2019, 100, 8–21. [Google Scholar] [CrossRef]
- Andráš, P.; Midula, P.; Matos, J.X.; Buccheri, G.; Drímal, M.L.; Dirner, V.; Melichová, Z.; Turisová, I. Comparison of Soil Contamination at the Selected European Copper Mines. Carpathian J. Earth Environ. Sci. 2021, 16, 163–174. [Google Scholar] [CrossRef]
- Grieco, G.; Sinojmeri, A.; Bussolesi, M.; Cocomazzi, G.; Cavallo, A. Environmental impact variability of copper tailing dumps in fushe arrez (Northern albania): The role of pyrite separation during flotation. Sustainability 2021, 13, 9643. [Google Scholar] [CrossRef]
Study Site | Topography | Vegetation (Dominants) | Soils |
---|---|---|---|
1 | Summit and slopes | Single specimens of arboreal species (Betula pendula, Salix caprea, Acer platanoides) | Spolic Technosols (Arenic/Loamic, Dystric, Sulfidic, Phytotoxic) and Technosols (Loamic, Ochric) |
Talus | Bare ground | Dystric Colluvic Stagnic Regosols (Arenic/Loamic, Lamellic, Areninovic, Sulfidic, Phytotoxic) | |
Wet meadows (Calamagrostis epigeios) | Colluvic Brunic Stagnic Folic Regosols (Arenic/Loamic, Lamellic, Areninovic, Toxic) over Phaeozems (Loamic) | ||
Birch forests with a bare floor or an herb layer, either monodominant (Calamagrostis epigeios) or more rarely poly-dominant | |||
2 | Summit | Bare ground | Spolic Technosols (Arenic/Loamic, Dystric, Sulfidic, Phytotoxic) and Technosols (Loamic, Ochric) |
Wet meadows (Calamagrostis epigeios), mixed grasslands (Poa angustifolia, Trifolium hybridum, Lotus corniculatus), and young sparse birch forests with a poly-dominant herb layer | Reductic Spolic Technosols (Arenic/Loamic, Dystric) | ||
Slopes | Bare ground | Spolic Technosols (Arenic/Loamic, Dystric, Sulfidic, Phytotoxic) and Technosols (Loamic, Ochric) | |
Talus | Bare ground | Dystric Colluvic Stagnic Regosols (Arenic/Loamic, Lamellic, Areninovic, Sulfidic, Phytotoxic) | |
3 | Summit and lopes | Mixed grassland dominated by ruderal species (Calamagrostis epigeios, Solidago canadensis) | Technosols (Drainic, Eutric, Folic, Loamic, Molic, Transportic) |
Talus | Bare ground | Dystric Colluvic Stagnic Regosols (Arenic/Loamic, Lamellic, Areninovic, Sulfidic, Phytotoxic) | |
Birch forests with a bare floor or a monodominant (Calamagrostis epigeios) or more rarely a poly-dominant herb layer | Colluvic Brunic Stagnic Folic Regosols (Arenic/Loamic, Lamellic, Areninovic, Toxic) over Phaeozems (Loamic) | ||
Unpolluted area | Interfluve surface | Mixed grassland (Fragaria viridis, Galium mollugo, Tanacetum vulgare) | Calcic Chernozems (Aric, Loamic) |
Gully bottom | Meadow (Alopecurus pratensis, Phleum pratense) |
Parameters | Methods and Equipment |
---|---|
Total organic carbon | The titrimetric method with phenylanthranilic acid [42] |
pH | pH-meter ‘Expert-pH’ (Econix-Expert Ltd., Moscow, Russia), soil: solution ratio 1:2.5 |
Grain-size fractions | A laser diffraction technique and Analysette 22 equipment (Fritsch, Idar-Oberstein, Germany) in samples pre-treated with 4% Na4P2O7 |
Total content of elements in soil samples | Axios X-ray fluorescence spectrometry (PANalytical, Almelo, Netherlands); a powder (<0.067 mm) |
Total content of elements in plant samples | Acid digestion (concentrated HNO3 and H2O2). Elan-6100 inductively coupled plasma mass spectrometer and an Optima-4300 DV inductively coupled plasma atomic emission spectrometer (PerkinElmer Inc., Waltham, Massachusetts, United States |
Electrical conductivity | Hanna HI 98331 (Woonsocket, Rhode Island, United States), soil-to-water ratio 1:5 |
Cation and anion composition (Cl−, NO3−, SO42−, Ca2+, Mg2+, Na+) | A ‘Styer’ liquid chromatograph with an amperometric detector (Aquilon, Saint Petersburg, Russia) |
Anions HCO3− and CO32− | Acid-base titration using a 0.01 M H2SO4 solution |
Mobile fractions: | Parallel extraction; incubation for 18 h [43,44,45]; AES-ICP detection (iCAP-6500, Thermo Scientific, Waltham, MA, USA): |
F1 | NH4Ac (ammonium acetate buffer); soil-to-water ratio 1:5; pH 4.8 |
F2 | NH4Ac with 1% EDTA (ethylenediaminetetraacetic acid); soil-to-water ratio 1:5; pH 4.5 |
F3 | 1 M HNO3 (nitric acid); soil-to-water ratio 1:10; pH 0.0 |
Chemical Elements | Kx | PWR | Ax | Bx | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spoil Heaps | Talus | Unpolluted Area | Spoil Heaps | Talus | Unpolluted Area | Spoil Heaps | Talus | Unpolluted Area | Spoil Heaps | Talus | Unpolluted Area | |
Na | 1.6 | 0.6 | 0.5 | 0.009 | 0.008 | 0.004 | 0.49 | 0.61 | 0.07 | 2.1 | 3.1 | 0.8 |
Mg | 17 | 3.9 | 0.5 | 0.036 | 0.047 | 0.298 | 23 | 26 | 6.2 | 108 | 51 | 5.5 |
Al | 1.7 | 0.8 | 0.002 | 0.001 | 0.001 | 0.819 | 0.05 | 0.03 | 0.05 | 2.0 | 0.11 | 0.9 |
P | 36 | 27 | 28 | 1173 | 1169 | 472 | 136 | 143 | 42 | 278 | 337 | 217 |
S | 19 | 38 | 7.1 | 0.003 | 0.004 | 0.148 | 2.2 | 2.2 | 32 | 5.8 | 3.8 | 158 |
K | 0.09 | 0.06 | 0.04 | 6.2 | 5.5 | 7.4 | 15 | 33 | 12 | 49 | 82 | 74 |
Ca | 20 | 16 | 2.3 | 0.04 | 0.04 | 0.12 | 32 | 93 | 9 | 3.1 | 10.3 | 1.1 |
Mn | 16 | 3.4 | 0.08 | 1725 | 1763 | 61,162 | 106 | 147 | 16 | 478 | 119 | 18 |
Fe | 0.4 | 1.2 | 0.002 | 0.009 | 0.002 | 0.883 | 0.058 | 0.140 | 0.088 | 0.8 | 0.2 | 0.9 |
Co | 10,159 | 5778 | 14 | 0.06 | 0.11 | 68 | 1.9 | 4.6 | 4.3 | 8 | 6 | 42 |
Ni | 4817 | 2415 | 15 | 0.17 | 0.43 | 50 | 2.9 | 6.0 | 3.2 | 11 | 16 | 5 |
Cu | 686 | 690 | 65 | 5 | 4 | 20 | 13 | 8 | 5 | 70 | 76 | 150 |
Zn | 22,240 | 8605 | 35 | 1 | 2 | 425 | 61 | 81 | 60 | >1500 | >1500 | >2000 |
Pb | 85 | 180 | 72 | 0.91 | 0.20 | 0.35 | 0.24 | 0.10 | 0.10 | 1.5 | 0.7 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenkov, I.; Sharapova, A.; Lednev, S.; Yudina, N.; Karpachevskiy, A.; Klink, G.; Koroleva, T. Geochemical Partitioning of Heavy Metals and Metalloids in the Ecosystems of Abandoned Mine Sites: A Case Study within the Moscow Brown Coal Basin. Water 2022, 14, 113. https://doi.org/10.3390/w14010113
Semenkov I, Sharapova A, Lednev S, Yudina N, Karpachevskiy A, Klink G, Koroleva T. Geochemical Partitioning of Heavy Metals and Metalloids in the Ecosystems of Abandoned Mine Sites: A Case Study within the Moscow Brown Coal Basin. Water. 2022; 14(1):113. https://doi.org/10.3390/w14010113
Chicago/Turabian StyleSemenkov, Ivan, Anna Sharapova, Sergey Lednev, Natalia Yudina, Andrey Karpachevskiy, Galya Klink, and Tatiana Koroleva. 2022. "Geochemical Partitioning of Heavy Metals and Metalloids in the Ecosystems of Abandoned Mine Sites: A Case Study within the Moscow Brown Coal Basin" Water 14, no. 1: 113. https://doi.org/10.3390/w14010113