Trial of Chemical Composition Estimation Related to Submarine Volcano Activity Using Discolored Seawater Color Data Obtained from GCOM-C SGLI. A Case Study of Nishinoshima Island, Japan, in 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. XYZ Colorimetric System Conversion from RGB and Reflectance Data
2.3. Discolored Seawater and the Chemical Composition Data Set
2.4. Calculation of Volcanic Activity Using Satellite Data
3. Results
3.1. Relationship between the Color of Discolored Seawater and Its Chemical Composition in Submarine Volcanoes
3.2. Volcanic Activity Characteristics of Nishinoshima Estimated from AHI Data
3.3. Color Characteristics of Discolored Seawater Estimated from SGLI Data
3.4. Distribution Characteristics of the Chemical Components Estimated from SGLI Data
4. Discussion
4.1. Validity of the Relationship between the Seawater Color and its Chemical Composition
4.2. Validity of Seawater Color Estimation Derived from SGLI
4.3. Validity of Discolored Seawater Distribution Characteristics Based on SGLI Data
5. Conclusions
- A significant correlation was found between the seawater color (x) calculated using the XYZ colorimetric system and the chemical composition such as x vs (Fe + Al)/Si, y vs Si, y vs (Fe + Al)/Si, y vs Si% based on the modified dataset from a previous study [18].
- The fluctuation of the Himawari-8 maximum water temperature (Tmax) around Nishinoshima Island at midnight corresponded well with the volcanic activity.
- The discolored seawater around Nishinoshima Island, derived from SGLI, is mostly blue at the dominant WL of approximately 475 nm, but we also observed data showing a relatively high purity of green to red at approximately 535–615 nm.
- The distribution of (Fe + Al)/Si in Nishinoshima Island, estimated from SGLI data, fluctuated significantly just before the volcanic activity became active (approximately one month prior).
Funding
Acknowledgments
Conflicts of Interest
References
- Babu, A.; Kumar, S. InSAR coherence and backscatter images based analysis for the Anak Krakatau volcano eruption. Proceedings 2019, 24, 21. [Google Scholar] [CrossRef] [Green Version]
- Yates, A.S.; Savage, M.K.; Jolly, A.D.; Caudron, C.; Hamling, I.J. Volcanic, coseismic, and seasonal changes detected at White Island (Whakaari) volcano, New Zealand, using seismic ambient noise. Geophys. Res. Lett. 2019, 46, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Tamura, Y.; Ishizuka, O.; Sato, T.; Nichols, A.R. Nishinoshima volcano in the Ogasawara Arc: New continent from the ocean? Island Arc 2019, 28, e12285. [Google Scholar] [CrossRef]
- Scarpa, R.; Tilling, R.I. Monitoring and Mitigation of Volcano Hazards; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Delacourt, C.; Briole, P.; Achache, J.A. Tropospheric corrections of SAR interferograms with strong topography. Application to Etna. Geophys. Res. Lett. 1998, 25, 2849–2852. [Google Scholar] [CrossRef]
- Remy, D.; Bonvalot, S.; Briole, P.; Murakami, M. Accurate measurements of tropospheric effects in volcanic areas from SAR interferometry data: Application to Sakurajima volcano (Japan). Earth Planet. Sci. Lett. 2003, 213, 299–310. [Google Scholar] [CrossRef]
- Rothery, D.A.; Francis, P.W.; Wood, C.A. Volcano monitoring using short wavelength infrared data from satellites. J. Geophys. Res. Solid Earth 1998, 93, 7993–8008. [Google Scholar] [CrossRef]
- Kaneko, T.; Koyama, T.; Yasuda, A.; Takeo, M.; Yanagisawa, T.; Kajiwara, K.; Honda, Y. Low-altitude remote sensing of volcanoes using an unmanned autonomous helicopter: An example of aeromagnetic observation at Izu-Oshima volcano, Japan. Int. J. Remote Sens. 2011, 32, 1491–1504. [Google Scholar] [CrossRef]
- Urai, M. Sulfur dioxide flux estimation from volcanoes using advanced spaceborne thermal emission and reflection radiometer—a case study of Miyakejima volcano, Japan. J. Volcanol. Geotherm. Res. 2004, 134, 1–13. [Google Scholar] [CrossRef]
- Prata, A.J.; Kerkmann, J. Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.J.; Hufford, G.; Pieri, D.; Berg, J. Failures in detecting volcanic ash from a satellite-based technique. Remote Sens. Environ. 2000, 72, 191–217. [Google Scholar] [CrossRef]
- Ellrod, G.P.; Connell, B.H.; Hillger, D.W. Improved detection of airborne volcanic ash using multispectral infrared satellite data. J. Geophys. Res.: Atmos. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Nogami, K.; Yoshida, M.; Ossaka, J. Chemical composition of discolored seawater around Satsuma-Iwojima, Kagoshima, Japan. Bull. Volcanol. Soc. Jpn. 1993, 38, 71–77. [Google Scholar]
- Ossaka, J.; Adachi, N.; Tsuchide, N.; Nogami, K. Chemical compositions of discolored sea water around Izu-Oshimaat the 1986 Eruption. Bull. Volcanol. Soc. Jpn. 2000, 38, 71–77. (In Japanese) [Google Scholar]
- Urai, M.; Machida, S. Discolored seawater detection using ASTER reflectance products: A case study of Satsuma-Iwojima, Japan. Remote Sens. Environ. 2005, 99, 95–104. [Google Scholar] [CrossRef]
- Urai, M. Time series analysis of discolored seawater reflectance observed by Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) at Fukutoku-Okonaba submarine volcano, Japan. J. Volcanol. Geotherm. Res. 2014, 269, 23–27. [Google Scholar] [CrossRef]
- Ossaka, J.; Hirabayahi, J.; Nogami, K.; Tsuchide, M.; Adach, N. Chemical compositions of discolored sea water corresponding to activity of Fukutoku-Oka-no-Ba submarine volcano. -As an index of submarine volcanism. Bull. Volcanol. Soc. Jpn. 1996, 3, 107–113. (In Japanese) [Google Scholar]
- Watanabe, K. Comparison between chemical compositions and RGB values of discolored seawater around volcanoes. Rep. Hydrogr. Oceanogr. Res. 2015, 52, 49–55. (In Japanese) [Google Scholar]
- Ohsawa, S.; Kawamura, T.; Takamatsu, N.; Yusa, Y. Rayleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water. J. Volcanol. Geotherm. Res. 2002, 113, 49–60. [Google Scholar] [CrossRef]
- Onda, Y.; Ohsawa, S.; Takamatsu, N. A colorimetric and geochemical study of the coloration factor of hyper-acid active crater lakes. Jpn. J. Limnol. 2003, 64, 1–10. (In Japanese) [Google Scholar] [CrossRef]
- Westland, S. Review of the CIE system of colorimetry and its use in dentistry. J. Esthet. Restor. Dent. 2003, 15, S5–S12. [Google Scholar] [CrossRef]
- Sano, T.; Shirao, M.; Tani, K.; Tsutsumi, Y.; Kiyokawa, S.; Fujii, T. Progressive enrichment of arc magmas caused by the subduction of seamounts under Nishinoshima volcano, Izu–Bonin Arc, Japan. J. Volcanol. Geotherm. Res. 2016, 319, 52–65. [Google Scholar] [CrossRef]
- Japan Coast Guard. Nishinoshima Volcano. 2020. Available online: http://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/kaiyo18-e1.htm (accessed on 26 March 2021).
- Larrain, R.E.; Schaefer, D.M.; Reed, J.D. Use of digital images to estimate CIE color coordinates of beef. Food Res. Int. 2008, 41, 380–385. [Google Scholar] [CrossRef]
- Japanese Standard Association. JIS Handbook; Japanese Standards Association: Tokyo, Japan, 2010; Volume 61. (In Japanese) [Google Scholar]
- Tsuchide, M. Thermal distribution and chemical compositions of discolored waters derived from submarine volcanic activities. Rep. Hydrogr. Oceanogr. Res. 1998, 34, 49–64. (In Japanese) [Google Scholar]
- Kaneko, T.; Maeno, F.; Yasuda, A.; Takeo, M.; Takasaki, K. The 2017 Nishinoshima eruption: Combined analysis using Himawari-8 and multiple high-resolution satellite images. Earth Planets Space 2019, 71, 1–18. [Google Scholar] [CrossRef]
- Wernand, M.R.; Van der Woerd, H.J. Spectral analysis of the Forel-Ule Ocean colour comparator scale. J. Eur. Opt. Soc. Rapid Publ. 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- Geospatial Information Authority of Japan. 2020. Available online: https://www.gsi.go.jp/BOUSAI/R1_nishinoshima.html (accessed on 26 March 2021). (In Japanese).
No. | Station * | Water Sampling Date | Aerial Photo Date | R | G | B | Fe | Al | Si | (Fe+Al)/Si | Fe% | Al% | Si% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/kg) | (mg/kg) | (mg/kg) | |||||||||||
1 | IZ | Dec.10, 1986 | Dec.10, 1986 | 112 | 146 | 147 | 0.18 | 0.8 | 1.79 | 0.55 | 6.5 | 28.9 | 64.6 |
2 | IZ | Dec.11, 1986 | Dec.11, 1986 | 161 | 184 | 176 | 0.02 | 0.04 | 0.24 | 0.25 | 6.7 | 13.3 | 80.0 |
3 | IZ | Dec.16, 1986 | Dec.17, 1986 | 161 | 168 | 174 | 1.6 | 2.75 | 6.74 | 0.64 | 14.4 | 24.8 | 60.8 |
4 | IZ | Dec.20, 1986 | Dec.20, 1986 | 113 | 122 | 121 | 0.57 | 1.44 | 3.09 | 0.65 | 11.2 | 28.2 | 60.6 |
5 | IZ | Jan. 7, 1987 | Jan. 7, 1987 | 146 | 152 | 148 | 0.36 | 1.16 | 2.25 | 0.68 | 9.5 | 30.8 | 59.7 |
6 | IZ | Jan. 8, 1987 | Jan. 8, 1987 | 138 | 157 | 157 | 0.24 | 1.05 | 1.64 | 0.79 | 8.2 | 35.8 | 56.0 |
7 | NS | Jul. 7-8, 1974 | Aug. 3, 1974 | 119 | 126 | 144 | 1.4 | 0.7 | 11.23 | 0.19 | 10.5 | 5.3 | 84.2 |
8 | KT | Mar.1984 | - | 221 | 220 | 200 | 0.3 | 0 | 0.22 | 1.36 | 57.7 | 0.0 | 42.3 |
9 | FO | Mar.21, 1977 | Jan.10, 1977 | 233 | 247 | 247 | 0.14 | 0.09 | 0.25 | 0.94 | 29.2 | 18.8 | 52.1 |
10 | FO | Jan.20-24, 1986 | Jan.12, 1986 | 153 | 125 | 113 | 0.54 | 0.63 | 0.56 | 2.07 | 31.2 | 36.4 | 32.4 |
11 | FO | Feb.1-26, 1986 | Jan.29, 1986 | 114 | 108 | 118 | 0.13 | 0.34 | 2.71 | 0.17 | 4.1 | 10.7 | 85.2 |
Chemical Composition | R | G | B | x | y |
---|---|---|---|---|---|
Fe | −0.17 | −0.24 | −0.14 | −0.08 | −0.45 |
Al | −0.34 | −0.31 | −0.25 | −0.18 | −0.23 |
Si | −0.43 | −0.41 | −0.24 | −0.4 | −0.79 * |
(Fe+Al)/Si | 0.45 | 0.21 | 0.05 | 0.83 * | 0.75 * |
Fe% | 0.78* | 0.59 | 0.46 | 0.61 | 0.59 |
Al% | −0.31 | −0.29 | −0.34 | 0.11 | 0.27 |
Si% | −0.53 | −0.36 | −0.2 | −0.67 | −0.77 * |
Date | Eruption | Discolored Water | Water Color | Discoloration Position | Discoloration Width |
---|---|---|---|---|---|
17 Jan. 2020 | Yes | Yes | - | - | - |
4 Feb. 2020 | Yes | Yes | yellowish-brown | W/NE | about 100 m |
17 Feb. 2020 | Yes | Yes | - | - | - |
9 Mar. 2020 | Yes | Yes | yellow-green | W/N/E | |
15 Mar. 2020 | Yes | Yes | - | - | - |
6 Apr. 2020 | None | Yes | - | - | - |
16 Apr. 2020 | None | Yes | - | - | - |
19 Apr. 2020 | None | Yes | brown | E | |
29 Apr. 2020 | Yes | Yes | - | - | - |
18 May 2020 | Yes | Yes | - | - | - |
7 Jun. 2020 | Yes | Yes | yellowish-brown | N | - |
15 Jun. 2020 | Yes | Yes | yellowish-brown | E | - |
19 Jun. 2020 | Yes | Yes | - | - | - |
29 Jun. 2020 | Yes | Yes | yellow-green | All | |
20 Jul. 2020 | Yes | Yes | - | - | - |
19 Aug. 2020 | None | Yes | - | - | - |
23 Aug. 2020 | None | Yes | yellow-green | NW/SW | - |
Light green | N/SE | 2 km< | |||
5 Sep. 2020 | None | Yes | - | NW/SW | 2 km< |
28 Oct. 2020 | None | Yes | brown | SE/SW | - |
24 Nov. 2020 | None | Yes | brown | SE/SW | - |
7 Dec. 2020 | None | Yes | brown | SE/SW | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakuno, Y. Trial of Chemical Composition Estimation Related to Submarine Volcano Activity Using Discolored Seawater Color Data Obtained from GCOM-C SGLI. A Case Study of Nishinoshima Island, Japan, in 2020. Water 2021, 13, 1100. https://doi.org/10.3390/w13081100
Sakuno Y. Trial of Chemical Composition Estimation Related to Submarine Volcano Activity Using Discolored Seawater Color Data Obtained from GCOM-C SGLI. A Case Study of Nishinoshima Island, Japan, in 2020. Water. 2021; 13(8):1100. https://doi.org/10.3390/w13081100
Chicago/Turabian StyleSakuno, Yuji. 2021. "Trial of Chemical Composition Estimation Related to Submarine Volcano Activity Using Discolored Seawater Color Data Obtained from GCOM-C SGLI. A Case Study of Nishinoshima Island, Japan, in 2020" Water 13, no. 8: 1100. https://doi.org/10.3390/w13081100
APA StyleSakuno, Y. (2021). Trial of Chemical Composition Estimation Related to Submarine Volcano Activity Using Discolored Seawater Color Data Obtained from GCOM-C SGLI. A Case Study of Nishinoshima Island, Japan, in 2020. Water, 13(8), 1100. https://doi.org/10.3390/w13081100