Light or Dark Greywater for Water Reuse? Economic Assessment of On-Site Greywater Treatment Systems in Rural Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cases
2.2. Economic Analysis
2.2.1. Economic Costs
- (a)
- Capital costs
- (b)
- Operation and maintenance costs
- (c)
- Environmental costs
2.2.2. Economic Benefits
- (a)
- Benefits for water savings
- (b)
- Environmental benefits
2.3. Evaluation Scenarios
- i.
- Scenario 1: Light greywater inlet
- ii.
- Scenario 2: Light + dark greywater inlet
2.4. Economic Indicators of Viability of the Project Investment
2.4.1. Ratio of Benefits to Costs
2.4.2. Net Present Value
2.4.3. Internal Return Rate
2.4.4. Payback Period and Discounted Payback Period
2.5. Sensitivity Analysis
3. Results and Discussion
3.1. Economic Analysis
3.2. Sensitivity Analysis
3.2.1. Without a State Subsidy
3.2.2. With a State Subsidy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, A.; Salmani, M.; Razaghi, F.; Keshavarz, M. An empirical analysis of effective factors on farmers adaptation behavior in water scarcity conditions in rural communities. Int. Soil Water Conserv. Res. 2017, 5, 265–272. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and water reuse to address global water scarcity. Rev. Environ. Sci. Biotechnol. 2017, 16, 591–609. [Google Scholar] [CrossRef]
- Voulvoulis, N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Vuppaladadiyam, A.K.; Merayo, N.; Prinsen, P.; Luque, R.; Blanco, A.; Zhao, M. A review on greywater reuse: Quality, risks, barriers and global scenarios. Rev. Environ. Sci. Biotechnol. 2019, 18, 77–99. [Google Scholar] [CrossRef]
- Muthukumaran, S.; Baskaran, K.; Sexton, N. Quantification of potable water savings by residential water conservation and reuse—A case study. Resour. Conserv. Recycl. 2011, 55, 945–952. [Google Scholar] [CrossRef]
- Al-Jayyousi, O.R. Greywater reuse: Towards sustainable water management. Desalination 2003, 156, 181–192. [Google Scholar] [CrossRef]
- Lazarova, V.; Hills, S.; Birks, R. Using recycled water for non-potable, urban uses: A review with particular reference to toilet flushing. Water Sci. Technol. Water Supply 2003, 3, 69–77. [Google Scholar] [CrossRef]
- Friedler, E.; Hadari, M. Economic feasibility of on-site greywater reuse in multi-storey buildings. Desalination 2006, 190, 221–234. [Google Scholar] [CrossRef]
- Albalawneh, A.; Chang, T.-K. Review of the greywater and proposed greywater recycling scheme for agricultural irrigation reuses. Int. J. Res. 2015, 3, 16–35. [Google Scholar] [CrossRef]
- Birks, R.; Hills, S. Characterisation of indicator organisms and pathogens in domestic greywater for Recyclin. Environ. Monit. Assess. 2007, 129, 61–69. [Google Scholar] [CrossRef]
- Shaikh, I.N.; Ahammed, M.M. Quantity and quality characteristics of greywater: A review. J. Environ. Manag. 2020, 261, 110266. [Google Scholar] [CrossRef]
- Sushmitha, M.B.; Chanakya, H.N.; Khuntia, H.K. Efficient Grey Water Treatment and Reuse Options for India—A Review. In Waste Water Recycing and Management; Springer: Singapore, 2019; pp. 143–149. [Google Scholar]
- Rodríguez, C.; Sánchez, R.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Cost–Benefit Evaluation of Decentralized Greywater Reuse Systems in Rural Public Schools in Chile. Water 2020, 12, 3468. [Google Scholar] [CrossRef]
- Friedler, E. Quality of individual domestic greywater streams and its implication for on-site treatment and reuse possibilities. Environ. Technol. 2004, 25, 997–1008. [Google Scholar] [CrossRef]
- Cecconet, D.; Callegari, A.; Hlavínek, P.; Capodaglio, A.G. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: A critical review. Clean Technol. Environ. Policy 2019, 21, 745–762. [Google Scholar] [CrossRef]
- Alsulaili, A.D.; Hamoda, M.F.; Al-Jarallah, R.; Alrukaibi, D. Treatment and potential reuse of greywater from schools: A pilot study. Water Sci. Technol. 2017, 75, 2119–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedler, E.; Kovalio, R.; Galil, N.I. On-site greywater treatment and reuse in multi-storey buildings. Water Sci. Technol. 2005, 51, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Leong, J.Y.C.; Chong, M.N.; Poh, P.E. Assessment of greywater quality and performance of a pilot-scale decentralised hybrid rainwater-greywater system. J. Clean. Prod. 2018, 172, 81–91. [Google Scholar] [CrossRef]
- Ogoshi, M.; Suzuki, Y.; Asano, T. Water reuse in Japan. Water Sci. Technol. 2001, 43, 17–23. [Google Scholar] [CrossRef]
- Rosa, G.; Ghisi, E. Water Quality and Financial Analysis of a System Combining Rainwater and Greywater in a House. Water 2021, 13, 930. [Google Scholar] [CrossRef]
- Byrne, J.; Dallas, S.; Anda, M.; Ho, G. Quantifying the Benefits of Residential Greywater Reuse. Water 2020, 12, 2310. [Google Scholar] [CrossRef]
- Thaher, R.A.; Mahmoud, N.; Al-Khatib, I.A.; Hung, Y.T. Reasons of Acceptance and Barriers of House Onsite Greywater Treatment and Reuse in Palestinian Rural Areas. Water 2020, 12, 1679. [Google Scholar] [CrossRef]
- Porob, S.; Craddock, H.A.; Motro, Y.; Sagi, O.; Gdalevich, M.; Ezery, Z.; Davidovitch, N.; Ronen, Z.; Moran-Gilad, J. Quantification and Characterization of Antimicrobial Resistance in Greywater Discharged to the Environment. Water 2020, 12, 1460. [Google Scholar] [CrossRef]
- Cureau, R.J.; Ghisi, E. Reduction of Potable Water Consumption and Sewage Generation on a City Scale: A Case Study in Brazil. Water 2019, 11, 2351. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, I.; Ward, S.; Mendoza, J.G.; Rincón, C.I.; Oviedo-Ocaña, E.R. End-User Cost-Benefit Prioritization for Selecting Rainwater Harvesting and Greywater Reuse in Social Housing. Water 2017, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- Juan, Y.K.; Chen, Y.; Lin, J.M. Greywater Reuse System Design and Economic Analysis for Residential Buildings in Taiwan. Water 2016, 8, 546. [Google Scholar] [CrossRef]
- Lilford, E.; Maybee, B.; Packey, D. Cost of capital and discount rates in cash flow valuations for resources projects. Resour. Policy 2018, 59, 525–531. [Google Scholar] [CrossRef]
- March, J.G.; Gual, M. Studies on chlorination of greywater. Desalination 2009, 249, 317–322. [Google Scholar] [CrossRef]
- Ziemba, C.; Sharma, P.; Ahrens, T.; Reynaert, E.; Morgenroth, E. Disruptions in loading and aeration impact effluent chlorine demand during biological greywater recycling. Water Res. X 2021, 11, 100087. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; López-Mosquera, N.; Lera-López, F.; Faulin, J. An Extended Planned Behavior Model to Explain the Willingness to Pay to Reduce Noise Pollution in Road Transportation. J. Clean. Prod. 2018, 177, 144–154. [Google Scholar] [CrossRef]
- Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137. [Google Scholar] [CrossRef]
- Bjørner, T.B. Combining socio-acoustic and contingent valuation surveys to value noise reduction. Transp. Res. Part D Transp. Environ. 2004, 9, 341–356. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente (MMA). Decreto Supremo 38/11 “Norma de Emisión de Ruidos Generados por Fuentes que Indica” [Supreme Decree 38/11 Norm of Emission of Noise Generated by Sources That Indicates, Authors Translation]; MMA: Santiago, Chile, 2011.
- World Health Organization. Urban Planning, Environment and Health: From Evidence to Policy Action. 2010. Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/114448/E93987.pdf (accessed on 20 October 2021).
- Xiao, Y.; Lu, Y.; Guo, Y.; Yuan, Y. Estimating the willingness to pay for green space services in Shanghai: Implications for social equity in urban China. Urban For. Urban Green. 2017, 26, 95–103. [Google Scholar] [CrossRef]
- (SIEDU), Sistema de Indicadores y Estándares del Desarrollo Urbano. Indicadores Urbanos [Urban Indicators, Authors Translation]. Available online: http://siedu.ine.cl/descargar/descarga.html (accessed on 19 October 2020).
- Montecinos, S.; Gutiérrez, J.R.; López-Cortés, F.; López, D. Climatic characteristics of the semi-arid Coquimbo Region in Chile. J. Arid Environ. 2016, 126, 7–11. [Google Scholar] [CrossRef]
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Nielsen, T.S.; Hansen, K.B. Do green areas affect health? Results from a Danish survey on the use of green areas and health indicators. Health Place 2007, 13, 839–850. [Google Scholar] [CrossRef]
- Martínez, C. Valoración Económica de Áreas verdes Urbanas de uso Público en la Comuna de La Reina [Economic Valuation of Urban Green Areas for Public Use in the Commune of La Reina]. Master’s Thesis, University of Chile, Santiago, Chile, 2004. [Google Scholar]
- Liang, X.; van Dijk, M.P. Financial and economic feasibility of decentralized wastewater reuse systems in Beijing. Water Sci. Technol. 2010, 61, 1965–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cashman, S.; Ma, X.; Mosley, J.; Garland, J.; Crone, B.; Xue, X. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery. Bioresour. Technol. 2018, 254, 56–66. [Google Scholar] [CrossRef]
- Diario Oficial de la República de Chile. Ley N° 21.075: Regula la Recolección, Reutilización y Disposición de Aguas Grises [Law N° 21.075: Regulates the Collection, Reuse and Disposal of Greywater, Authors Translation]; Biblioteca del Congreso Nacional de Chile: Santiago, Chile, 2018. [Google Scholar]
- Ministerio de Salud. Proyecto de Reglamento Sobre Condiciones Sanitarias Básicas Para la Reutilización de Aguas Grises [Draft Regulation on Basic Sanitary Conditions for the Reuse of Graywater, Authors Translation]; Departamento de Salud Ambiental: Santiago, Chile, 2018.
- Salinas, C.X.; Gironás, J.; Pinto, M. Water security as a challenge for the sustainability of La Serena-Coquimbo conurbation in northern Chile: Global perspectives and adaptation. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1235–1246. [Google Scholar] [CrossRef]
- Rodríguez, C.; Sánchez, R.; Lozano-Parra, J.; Rebolledo, N.; Schneider, N.; Serrano, J.; Leiva, E. Water Balance Assessment in Schools and Households of Rural Areas of Coquimbo Region, North-Central Chile: Potential for Greywater Reuse. Water 2020, 12, 2915. [Google Scholar] [CrossRef]
- Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile. Sustainability 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Hurlbert, M.A. Case Study Coquimbo, Chile. In Adaptive Governance of Disaster. Water Governance—Concepts, Methods, and Practice; Springer: Cham, Switzerland, 2018; pp. 143–167. [Google Scholar]
- Gómez, F.; Montero, L.; De Vicente, V.; Sequi, A.; Castilla, N. Vegetation influences on the human thermal comfort in outdoor spaces: Criteria for urban planning. WIT Trans. Ecol. Environ. 2008, 117, 151–163. [Google Scholar]
- Sodoudi, S.; Zhang, H.; Chi, X.; Müller, F.; Li, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 2018, 34, 85–96. [Google Scholar] [CrossRef]
- Zölch, T.; Rahman, M.A.; Pfleiderer, E.; Wagner, G.; Pauleit, S. Designing public squares with green infrastructure to optimize human thermal comfort. Build. Environ. 2019, 149, 640–654. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Adegun, O.B.; Balogun, A.A. The effect of vegetation on indoor and outdoor thermal comfort conditions: Evidence from a microscale study of two similar urban buildings in Akure, Nigeria. Indoor Built Environ. 2016, 25, 603–617. [Google Scholar] [CrossRef]
- Teli, D.; Jentsch, M.F.; James, P.A.B. Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy Build. 2012, 53, 166–182. [Google Scholar] [CrossRef]
- Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. An integrated school and schoolyard design method for summer thermal comfort and energy efficiency in Northern China. Build. Environ. 2017, 124, 369–387. [Google Scholar] [CrossRef]
- Meron, N.; Meir, I.A. Building green schools in Israel. Costs, economic benefits and teacher satisfaction. Energy Build. 2017, 154, 12–18. [Google Scholar] [CrossRef]
- Vakalis, D.; Lepine, C.; MacLean, H.L.; Siegel, J.A. Can green schools influence academic performance? Crit. Rev. Environ. Sci. Technol. 2021, 51, 1354–1396. [Google Scholar] [CrossRef]
- Scott, J.T.; Kilmer, R.P.; Wang, C.; Cook, J.R.; Haber, M.G. Natural Environments Near Schools: Potential Benefits for Socio-Emotional and Behavioral Development in Early Childhood. Am. J. Community Psychol. 2018, 62, 419–432. [Google Scholar] [CrossRef]
- Samal, M.; Lama, S.L.; Luitel, S.; Ghimire, A. A pilot scale study of greywater treatment using gravel sand followed by granular activated carbon. Kathmandu Univ. J. Sci. Eng. Technol. 2020, 14, 1–7. [Google Scholar]
- López Zavala, M.Á.; Vega, R.C.; Miranda, R.A.L. Potential of Rainwater Harvesting and Greywater Reuse for Water Consumption Reduction and Wastewater Minimization. Water 2016, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Tsihrintzis, V.A. The use of Vertical Flow Constructed Wetlands in Wastewater Treatment. Water Resour. Manag. 2017, 31, 3245–3270. [Google Scholar] [CrossRef]
- Gkika, D.; Gikas, G.D.; Tsihrintzis, V.A. Environmental footprint of constructed wetlands treating wastewater. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 631–638. [Google Scholar] [PubMed]
- Stefanakis, A.; Akratos, C.S.; Tsihrintzis, V.A. Chapter 13—Techno-Economic Aspects of Vertical Flow Constructed Wetlands. In Vertical Flow Constructed Wetlands: Eco-engineering Systems for Wastewater and Sludge Treatment; Elsevier: Amsterdam, The Netherlands, 2014; pp. 293–313. ISBN 978-0-12-404612-2. [Google Scholar]
- Stefanakis, A.I. The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef] [Green Version]
Modeling Conditions | Specifications | |
---|---|---|
José Santos Ossa | Los Pozos | |
Inlet greywater | Light greywater | |
Water quality of inlet greywater | ||
sCOD [mg/L]: | 17.7 | 35.1 |
TDS [mg/L]: | 989 | 329 |
Fecal coliforms [MPN/1000 mL]: | 24 | 19 |
Turbidity [NTU]: | 84.2 | 23.7 |
Free chlorine residual [mg/L]: | 0.43 | 0.32 |
Volume of greywater to be treated | 800 L/d | 260 L/d |
Treatment system configuration | Filtration with activated Carbon and Zeolite + disinfection with chlorine | |
Volume of treated greywater | 760 L/d | 247 L/d |
Modeling Conditions | Specifications | |
---|---|---|
José Santos Ossa | Los Pozos | |
Inlet greywater | Light + dark greywater | |
Water quality of inlet greywater * | ||
sCOD [mg/L]: | 730 | |
TDS [mg/L]: | 1610 | |
Fecal coliforms [MPN/1000 mL]: | 8500 | |
Turbidity [NTU]: | 230 | |
Free chlorine residual [mg/L]: | 0.4 | |
Volume of greywater to be treated | 960 L/d | 312 L/d |
Treatment system configuration | Filtration with activated Carbon and Zeolite + + aerobic biological treatment module + disinfection with chlorine | |
Volume of treated greywater | 912 L/d | 296 L/d |
Variable | Range of Variation |
---|---|
Project lifetime (years) | 10 to 40 |
Amount of greywater to be treated | −20% to +20% |
Discount rate | 5% to 10% |
José Santos Ossa | Los Pozos | ||||
---|---|---|---|---|---|
Light | Light + Dark | Light | Ligh + Dark | ||
Economic Cost | Capital Cost | ||||
Collecting tanks | 211.3 | 211.3 | 211.3 | 211.3 | |
Perimeter closure | 1105.7 | 1437.3 | 1105.7 | 1437.3 | |
Plumbing | 614.3 | 798.5 | 614.3 | 798.5 | |
Filter material | 175.1 | 175.1 | 175.1 | 175.1 | |
Electric pumps | 60.2 | 120.4 | 60.2 | 120.4 | |
Water meter | 35.0 | 35.0 | 35.0 | 35.0 | |
Workforce | 3071.3 | 3992.6 | 3071.3 | 3992.6 | |
Operator training | 491.4 | 638.8 | 491.4 | 638.8 | |
Operating Cost | |||||
Electricity, Chlorination | 68.24 | 144.99 | 22.18 | 47.12 | |
Maintenance Cost | |||||
Filter material, replacement materials | 1699.14 | 9588.37 | 1699.14 | 4263.14 | |
Quality Control Cost | 2610 | 2610 | 2610 | 2610 | |
Environmental Cost | Noise | 439.08 | 2634.48 | 439.08 | 2634.48 |
Economic Benefit | Water savings | 1969.46 | 2363.35 | 640.07 | 768.09 |
Environmental Benefit | Willingness to pay for green areas | 3679.69 | 3679.69 | 176.32 | 176.32 |
NPV [US$] | RB/C | IRR | PBP [Years] | DPP [Years] | ||
---|---|---|---|---|---|---|
With Subsidy | José Santos Ossa (Light) | −1246.01 | 0.82 | 0.006 | 153.5 | 51.2 |
José Santos Ossa (Light + Dark) | −13,395.56 | 0.31 | - | - | - | |
Los Pozos (Light) | −6032.71 | 0.12 | - | - | - | |
Los Pozos (Light + Dark) | −13,071.10 | 0.07 | - | - | - | |
Without Subsidy | José Santos Ossa (Light) | −4931.52 | 0.53 | - | - | - |
José Santos Ossa (Light + Dark) | −17,081.06 | 0.26 | - | - | - | |
Los Pozos (Light) | −9718.21 | 0.08 | - | - | - | |
Los Pozos (Light + Dark) | −16,756.60 | 0.05 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva, E.; Rodríguez, C.; Sánchez, R.; Serrano, J. Light or Dark Greywater for Water Reuse? Economic Assessment of On-Site Greywater Treatment Systems in Rural Areas. Water 2021, 13, 3637. https://doi.org/10.3390/w13243637
Leiva E, Rodríguez C, Sánchez R, Serrano J. Light or Dark Greywater for Water Reuse? Economic Assessment of On-Site Greywater Treatment Systems in Rural Areas. Water. 2021; 13(24):3637. https://doi.org/10.3390/w13243637
Chicago/Turabian StyleLeiva, Eduardo, Carolina Rodríguez, Rafael Sánchez, and Jennyfer Serrano. 2021. "Light or Dark Greywater for Water Reuse? Economic Assessment of On-Site Greywater Treatment Systems in Rural Areas" Water 13, no. 24: 3637. https://doi.org/10.3390/w13243637