The Morphological Evolution of a Step–Pool Stream after an Exceptional Flood and Subsequent Ordinary Flow Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Flow Conditions
2.3. Planimetric Pattern
2.4. Step–Pool Configuration
2.5. Grain Size Distribution Variation
3. Results
3.1. Planimetric Evolution
3.2. Evolution of Step–Pool Configuration
3.3. Variation in Grain Size Distributions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, D.R.; Buffington, J.M. Channel-Reach Morphology in Mountain Drainage Basins. GSA Bull. 1997, 109, 596–611. [Google Scholar] [CrossRef]
- Church, M.; Zimmermann, A. Form and stability of step-pool channels: Research progress. Water Resour. Res. 2007, 43, 1–21. [Google Scholar] [CrossRef]
- Gomi, T.; Sidle, R.C.; Woodsmith, R.D.; Bryant, M.D. Characteristics of channel steps and reach morphology in headwater streams, southeast Alaska. Geomorphology 2003, 51, 225–242. [Google Scholar] [CrossRef]
- Lenzi, M.A. Step-pool evolution in the Rio Cordon, northeastern Italy. Earth Surf. Process. Landf. 2001, 26, 991–1008. [Google Scholar] [CrossRef]
- Turowski, J.M.; Yager, E.M.; Badoux, A.; Rickenmann, D.; Molnar, P. The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel. Earth Surf. Process. Landf. 2009, 34, 1661–1673. [Google Scholar] [CrossRef]
- Comiti, F.; Cadol, D.; Wohl, E. Flow regimes, bed morphology, and flow resistance in self-formed step-pool channels. Water Resour. Res. 2009, 45, 45. [Google Scholar] [CrossRef]
- Chin, A. The geomorphic significance of step–pools in mountain streams. Geomorphology 2003, 55, 125–137. [Google Scholar] [CrossRef]
- Chin, A.; Solverson, A.P.; O’Dowd, A.P.; Florsheim, J.L.; Kinoshita, A.M.; Nourbakhshbeidokhti, S.; Sellers, S.M.; Tyner, L.; Gidley, R. Interacting geomorphic and ecological response of step-pool streams after wildfire. GSA Bull. 2019, 131, 1480–1500. [Google Scholar] [CrossRef] [Green Version]
- Marston, R.A. The Geomorphic Significance of Log Steps in Forest Streams. Ann. Assoc. Am. Geogr. 1982, 72, 99–108. [Google Scholar] [CrossRef]
- Whittaker, J.G.; Jaeggi, M.N.R. Origin of Step-Pool Systems in Mountain Streams. J. Hydraul. Div. 1982, 108, 758–773. [Google Scholar] [CrossRef]
- Abrahams, A.D.; Li, G.; Atkinson, J.F. Step-Pool Streams: Adjustment to Maximum Flow Resistance. Water Resour. Res. 1995, 31, 2593–2602. [Google Scholar] [CrossRef]
- Davies, T.R.; Sutherland, A.J. Resistance to flow past deformable boundaries. Earth Surf. Process. Landf. 1980, 5, 175–179. [Google Scholar] [CrossRef]
- Schuerch, P.; Densmore, A.L.; McArdell, B.W.; Molnar, P. The influence of landsliding on sediment supply and channel change in a steep mountain catchment. Geomorphology 2006, 78, 222–235. [Google Scholar] [CrossRef]
- Crowe, J.C.; Wilcock, P.R. An experimental study of the step-pool bedform. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 6–10 December 2002; American Geophysical Union: Washington, DC, USA, 2002; Volume 2002, p. H21G-01. [Google Scholar]
- Valenza, J.M.; Edmonds, D.A.; Hwang, T.; Roy, S. Downstream changes in river avulsion style are related to channel morphology. Nat. Commun. 2020, 11, 2116. [Google Scholar] [CrossRef]
- Pellegrini, G.; Martini, L.; Cavalli, M.; Rainato, R.; Cazorzi, A.; Picco, L. The morphological response of the Tegnas alpine catchment (Northeast Italy) to a Large Infrequent Disturbance. Sci. Total. Environ. 2021, 770, 145209. [Google Scholar] [CrossRef]
- Wyżga, B.; Liro, M.; Mikuś, P.; Radecki-Pawlik, A.; Jeleński, J.; Zawiejska, J.; Plesiński, K. Changes of fluvial processes caused by the restoration of an incised mountain stream. Ecol. Eng. 2021, 168, 106286. [Google Scholar] [CrossRef]
- Picco, L.; Ravazzolo, D.; Rainato, R.; Lenzi, M.A. Characteristics of fluvial islands along three gravel bed-rivers of North-Eastern Italy. CIG 2014, 40, 53. [Google Scholar] [CrossRef] [Green Version]
- Tonon, A.; Picco, L.; Rainato, R. Test of methodology for developing a large wood budget: A 1-year example from a regulated gravel bed river following ordinary floods. Catena 2018, 165, 115–124. [Google Scholar] [CrossRef]
- Lucía, A.; Schwientek, M.; Eberle, J.; Zarfl, C. Planform changes and large wood dynamics in two torrents during a severe flash flood in Braunsbach, Germany 2016. Sci. Total. Environ. 2018, 640–641, 315–326. [Google Scholar] [CrossRef]
- Messenzehl, K.; Hoffmann, T.; Dikau, R. Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park—Linking geomorphic field mapping with geomorphometric modelling. Geomorphology 2014, 221, 215–229. [Google Scholar] [CrossRef]
- Misset, C.; Recking, A.; Legout, C.; Bakker, M.; Bodereau, N.; Borgniet, L.; Cassel, M.; Geay, T.; Gimbert, F.; Navratil, O.; et al. Combining multi-physical measurements to quantify bedload transport and morphodynamics interactions in an Alpine braiding river reach. Geomorphology 2020, 351, 106877. [Google Scholar] [CrossRef]
- Robson, B.J.; Chester, E.T.; Mitchell, B.D.; Matthews, T.G. Disturbance and the role of refuges in mediterranean climate streams. Hydrobiologia 2013, 719, 77–91. [Google Scholar] [CrossRef]
- Lucianetti, G.; Mastrorillo, L.; Mazza, R.; Partel, P. Groundwater response to precipitation extremes: The case of the “Vaia” storm (Eastern Italian Alps). Acque Sotter. Ital. J. Groundw. 2019, 8, 39–45. [Google Scholar] [CrossRef]
- Rainato, R.; Martini, L.; Pellegrini, G.; Picco, L. Hydrological, geomorphic and sedimentological responses of an alpine basin to a severe weather event (Vaia storm). Catena 2021, 207, 105600. [Google Scholar] [CrossRef]
- Rainato, R.; Picco, L.; Cavalli, M.; Mao, L.; Neverman, A.J.; Tarolli, P. Coupling Climate Conditions, Sediment Sources and Sediment Transport in an Alpine Basin. Land Degrad. Dev. 2018, 29, 1154–1166. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, M.; Mao, L.; Comiti, F. Effective discharge for sediment transport in a mountain river: Computational approaches and geomorphic effectiveness. J. Hydrol. 2006, 326, 257–276. [Google Scholar] [CrossRef]
- Rainato, R.; Mao, L.; Picco, L. Near-bankfull floods in an Alpine stream: Effects on the sediment mobility and bedload magnitude. Int. J. Sediment Res. 2018, 33, 27–34. [Google Scholar] [CrossRef]
- D’Agostino, V.; Lenzi, M.A. Bedload transport in the instrumented catchment of the Rio Cordon: Part II: Analysis of the bedload rate. Catena 1999, 36, 191–204. [Google Scholar] [CrossRef]
- Comiti, F.; Mao, L.; Wilcox, A.C.; Wohl, E.E.; Lenzi, M.A. Field-derived relationships for flow velocity and resistance in high-gradient streams. J. Hydrol. 2007, 340, 48–62. [Google Scholar] [CrossRef]
- Wilcox, A.C.; Wohl, E.E.; Comiti, F.; Mao, L. Hydraulics, morphology, and energy dissipation in an alpine step-pool channel. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Pagano, S.G.; Rainato, R.; García-Rama, A.; Gentile, F.; Lenzi, M.A. Analysis of suspended sediment dynamics at event scale: Comparison between a Mediterranean and an Alpine basin. Hydrol. Sci. J. 2019, 64, 948–961. [Google Scholar] [CrossRef]
- Cazzador, D.O.; Rainato, R.; Mao, L.; Martini, L.; Picco, L. Coarse sediment transfer and geomorphic changes in an alpine headwater stream. Geomorphology 2021, 376, 107569. [Google Scholar] [CrossRef]
- Cazzador, D.O.; Rainato, R.; Cavalli, M.; Lenzi, M.; Picco, L. Integrated analysis of sediment source areas in an Alpine basin. Catena 2020, 188, 104416. [Google Scholar] [CrossRef]
- Rickenmann, D.; D’Agostino, V.; Dalla Fontana, G.; Lenzi, M.; Marchi, L. New Results from Sediment Transport Measurements in Two Alpine Torrents. IAHS-AISH Publ. 1998, 248, 283–289. [Google Scholar]
- Picco, L.; Rainato, R.; Pellegrini, G.; Martini, L.; Lenzi, M.A.; Mao, L. An Extraordinary Event Changed the (Morphological) Appearance of a Famous Alpine Stream. In Proceedings of the River Flow 2020—10th Conference on Fluvial Hydraulics, Delft, The Netherlands, 7–10 July 2020; CRC Press: Boca Raton, FL, USA, 2020; pp. 1653–1658. [Google Scholar]
- Iheaturu, C.J.; Ayodele, E.G.; Okolie, C.J. An assessment of the accuracy of structure-from-motion (sfm) photogrammetry for 3d terrain mapping. Geomat. Landmanagement Landsc. 2020, 2, 65–82. [Google Scholar] [CrossRef]
- Rusnák, M.; Sládek, J.; Pacina, J.; Kidová, A. Monitoring of avulsion channel evolution and river morphology changes using UAV photogrammetry: Case study of the gravel bed Ondava River in Outer Western Carpathians. Area 2019, 51, 549–560. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Rossi, M.; Valigi, D. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth Planet. Sci. Lett. 2009, 279, 222–229. [Google Scholar] [CrossRef]
- Lawlor, S.M. Determination of Channel-Morphology Characteristics, Bankfull Discharge, and Various Design-Peak Discharges in Western Montana; US Geological Survey: Reston, VA, USA, 2004.
- Pampalone, V.; Di Stefano, C.; Nicosia, A.; Palmeri, V.; Ferro, V. Analysis of rill step–pool morphology and its comparison with stream case. Earth Surf. Process. Landf. 2020, 46, 775–790. [Google Scholar] [CrossRef]
- Rainato, R.; Mao, L.; García-Rama, A.; Picco, L.; Cesca, M.; Vianello, A.; Preciso, E.; Scussel, G.; Lenzi, M. Three decades of monitoring in the Rio Cordon instrumented basin: Sediment budget and temporal trend of sediment yield. Geomorphology 2017, 291, 45–56. [Google Scholar] [CrossRef]
- Rainato, R.; Mao, L.; Picco, L. The effects of low-magnitude flow conditions on bedload mobility in a steep mountain stream. Geomorphology 2020, 367, 107345. [Google Scholar] [CrossRef]
- Ashworth, P.J.; Best, J.L.; Jones, M. Relationship between sediment supply and avulsion frequency in braided rivers. Geology 2004, 32, 21. [Google Scholar] [CrossRef]
- Brizga, S.; Finlayson, B. Interactions between upland catchment and lowland rivers: An applied Australian case study. Geomorphology 1994, 9, 189–201. [Google Scholar] [CrossRef]
- Leenman, A.; Eaton, B. Mechanisms for avulsion on alluvial fans: Insights from high-frequency topographic data. Earth Surf. Process. Landf. 2021, 46, 1111–1127. [Google Scholar] [CrossRef]
- Nanson, G.C.; Knighton, A.D. Anabranching Rivers: Their Cause, Character and Classification. Earth Surf. Process. Landf. 1996, 21, 217–239. [Google Scholar] [CrossRef]
- Sims, A.J.; Rutherfurd, I.D. Management responses to pulses of bedload sediment in rivers. Geomorphology 2017, 294, 70–86. [Google Scholar] [CrossRef]
- Molnar, P.; Densmore, A.L.; McArdell, B.W.; Turowski, J.M.; Burlando, P. Analysis of changes in the step-pool morphology and channel profile of a steep mountain stream following a large flood. Geomorphology 2010, 124, 85–94. [Google Scholar] [CrossRef]
- Hajdukiewicz, H.; Wyżga, B.; Mikuś, P.; Zawiejska, J.; Radecki-Pawlik, A. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure. Geomorphology 2016, 272, 55–67. [Google Scholar] [CrossRef]
- Smith, M.W.; Carrivick, J.L.; Quincey, D.J. Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr. Earth Environ. 2015, 40, 247–275. [Google Scholar] [CrossRef] [Green Version]
- Beylich, A.A.; Sandberg, O. Geomorphic Effects of the Extreme Rainfall Event of 20-in the Latnjavagge. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 409–419. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, M.; Hassan, M.A.; Chartrand, S.M.; Wang, Z. Experimental study on the stability and failure of individual step-pool. Geomorphology 2018, 311, 51–62. [Google Scholar] [CrossRef]
- Liro, M.; Ruiz-Villanueva, V.; Mikuś, P.; Wyżga, B.; Castellet, E.B. Changes in the hydrodynamics of a mountain river induced by dam reservoir backwater. Sci. Total. Environ. 2020, 744, 140555. [Google Scholar] [CrossRef] [PubMed]
- Gintz’, D.; Hassan, M.A.; Schmidt’, K.-H. Frequency and Magnitude of Bedload in a Mountain River. Earth Surf. Process. Landf. 1996, 21, 433–445. [Google Scholar] [CrossRef]
Data | Pre-Event | Post-Event | Current Conditions |
---|---|---|---|
Remote sensing device | LiDAR | LiDAR | UAV |
Aerial photos | 2015 | 2019 | 2020 |
Digital Elevation Model | 2006 | 2019 | 2020 |
Grain Size Distribution | 2014 | 2018 | 2020 |
Longitudinal profile | 2015 | 2018 | 2020 |
Talweg Lenght | Mean channel Width | Active Channel Area | |
---|---|---|---|
(m) | (m) | (m2) | |
Pre-event | 350.8 | 10.3 | 3238.5 |
Post-event | 352.5 | 18.6 | 5425.1 |
Current conditions | 346.8 | 20.0 | 5993.8 |
Mean Ls | Mean Lp | Mean H | Mean Z | S | ||
---|---|---|---|---|---|---|
(m) | (m) | (m) | (m) | (m m−1) | ||
Pre-event | SPS1 | 5.93 | 5.56 | 1.03 | 0.92 | 0.16 |
SPS2 | 3.04 | 2.96 | 0.54 | 0.39 | 0.12 | |
SPS3 | 4.26 | 4.36 | 0.64 | 0.61 | 0.14 | |
SPS4 | 5.05 | 4.98 | 0.70 | 0.60 | 0.12 | |
SPS5 | 3.98 | 4.07 | 0.85 | 0.71 | 0.19 | |
SPS6 | 4.26 | 4.24 | 0.71 | 0.55 | 0.12 | |
Post-event | SPS1 | 7.69 | 6.61 | 1.12 | 1.10 | 0.14 |
SPS2 | 6.48 | 7.08 | 0.86 | 0.85 | 0.10 | |
SPS3 | 5.98 | 5.94 | 0.88 | 0.84 | 0.16 | |
SPS4 | 7.06 | 7.10 | 1.04 | 1.02 | 0.14 | |
Current conditions | SPS1 | 4.06 | 3.36 | 0.86 | 0.64 | 0.17 |
SPS2 | 5.67 | 5.63 | 0.80 | 0.64 | 0.12 | |
SPS3 | 5.72 | 6.57 | 1.04 | 0.66 | 0.12 | |
SPS4 | 1.52 | 1.59 | 0.57 | 0.37 | 0.24 | |
SPS5 | 2.51 | 2.23 | 0.75 | 0.46 | 0.19 | |
SPS6 | 5.75 | 6.40 | 1.12 | 0.82 | 0.16 | |
SPS7 | 4.04 | 4.83 | 0.41 | 0.29 | 0.07 | |
SPS8 | 3.28 | 3.23 | 0.49 | 0.49 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrini, G.; Rainato, R.; Martini, L.; Picco, L. The Morphological Evolution of a Step–Pool Stream after an Exceptional Flood and Subsequent Ordinary Flow Conditions. Water 2021, 13, 3630. https://doi.org/10.3390/w13243630
Pellegrini G, Rainato R, Martini L, Picco L. The Morphological Evolution of a Step–Pool Stream after an Exceptional Flood and Subsequent Ordinary Flow Conditions. Water. 2021; 13(24):3630. https://doi.org/10.3390/w13243630
Chicago/Turabian StylePellegrini, Giacomo, Riccardo Rainato, Lorenzo Martini, and Lorenzo Picco. 2021. "The Morphological Evolution of a Step–Pool Stream after an Exceptional Flood and Subsequent Ordinary Flow Conditions" Water 13, no. 24: 3630. https://doi.org/10.3390/w13243630
APA StylePellegrini, G., Rainato, R., Martini, L., & Picco, L. (2021). The Morphological Evolution of a Step–Pool Stream after an Exceptional Flood and Subsequent Ordinary Flow Conditions. Water, 13(24), 3630. https://doi.org/10.3390/w13243630