Aerobic Denitrification Is Enhanced Using Biocathode of SMFC in Low-Organic Matter Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment and Wastewater Preparation
2.2. SMFC Construction
2.3. Experimental Procedures
2.4. Analysis Methods
3. Results and Discussion
3.1. Electrochemical Performance of the SMFCs
3.2. Denitrification Efficiency
3.2.1. COD Removal
3.2.2. Nitrogen Removal
3.3. Correlation Analysis
3.4. Microbial Community Analysis
3.4.1. Microbial α-Diversity
3.4.2. Taxonomic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Abbas, S.Z.; Rafatullah, M. Recent advances in soil microbial fuel cells for soil contaminants remediation. Chemosphere 2021, 272, 129691. [Google Scholar] [CrossRef] [PubMed]
- APHA; Awwa; WEF. Standard Methods for Examination of Water and Waste Water, 22th ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Barwal, A.; Chaudhary, R. To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: A review. Rev. Environ. Sci. Bio/Technol. 2014, 13, 285–299. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Van Themaat, E.V.L.; Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Akirgöz, M.; Bayrakdar, A.; Çalli, B. How do the influent COD/Nitrogen and internal recirculation ratios affect the oxidation ditch type pre-anoxic landfill leachate treatment? J. Environ. Manag. 2021, 278, 111598. [Google Scholar] [CrossRef]
- Clauwaert, P.; Rabaey, K.; Aelterman, P.; De Schamphelaire, L.; Pham, T.H.; Boeckx, P.; Boon, N.; Verstraete, W. Biological Denitrification in Microbial Fuel Cells. Environ. Sci. Technol. 2007, 41, 3354–3360. [Google Scholar] [CrossRef]
- Doskočil, R.; Škapa, S.; Olšová, P. Success evaluation model for project management. M. Ekon. Manag. 2016, 19, 167–185. [Google Scholar] [CrossRef]
- Fang, Z.; Cao, X.; Li, X.; Wang, H.; Li, X. Biorefractory wastewater degradation in the cathode of constructed wetland-microbial fuel cell and the study of the electrode performance. Int. Biodeterior. Biodegrad. 2018, 129, 1–9. [Google Scholar] [CrossRef]
- Ghafari, S.; Hasan, M.; Aroua, M.K. Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresour. Technol. 2008, 99, 3965–3974. [Google Scholar] [CrossRef]
- He, T.; Xie, D.; Ni, J.; Li, Z.; Li, Z. Characteristics of nitrogen transformation and intracellular nitrite accumulation by the hypothermia bacterium Arthrobacter arilaitensis. Sci. Total. Environ. 2019, 701, 134730. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed. Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Isiuku, B.O.; Enyoh, C.E. Pollution and health risks assessment of nitrate and phosphate concentrations in water bodies in South Eastern, Nigeria. Environ. Adv. 2020, 2, 100018. [Google Scholar] [CrossRef]
- Jensen, V.B.; Darby, J.L.; Seidel, C.; Gorman, C. Nitrate in Potable Water Supplies: Alternative Management Strategies. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2203–2286. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, G.; Tian, H. Current state of sewage treatment in China. Water Res. 2014, 66, 85–98. [Google Scholar] [CrossRef]
- Mohan, T.K.; Nancharaiah, Y.; Venugopalan, V.; Sai, P.S. Effect of C/N ratio on denitrification of high-strength nitrate wastewater in anoxic granular sludge sequencing batch reactors. Ecol. Eng. 2016, 91, 441–448. [Google Scholar] [CrossRef]
- Lai, X.; Zhao, Y.; Pan, F.; Yang, B.; Wang, H.; Wang, S.; He, F. Enhanced optimal removal of nitrogen and organics from intermittently aerated vertical flow constructed wetlands: Relative COD/N ratios and microbial responses. Chemosphere 2019, 244, 125556. [Google Scholar] [CrossRef] [PubMed]
- Lardi, M.; Liu, Y.; Purtschert, G.; Pessi, G.; de Campos, S.B. Transcriptome Analysis of Paraburkholderia phymatum under Nitrogen Starvation and during Symbiosis with Phaseolus Vulgaris. Genes 2017, 8, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasagna, M.; De Luca, D.A.; Franchino, E. Nitrate contamination of groundwater in the western Po Plain (Italy): The effects of groundwater and surface water interactions. Environ. Earth Sci. 2016, 75, 240. [Google Scholar] [CrossRef]
- Lewis, J.W.M.; Wurtsbaugh, W.A.; Paerl, H.W. Rationale for Control of Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland Waters. Environ. Sci. Technol. 2011, 45, 10300–10305. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, Y.; Ren, Y.; Li, X.; Wang, X.; Li, J. Effect of anaerobic sludge on the bioelectricity generation enhancement of bufferless single-chamber microbial fuel cells. Bioelectrochemistry 2019, 131, 107387. [Google Scholar] [CrossRef] [PubMed]
- Maroušek, J.; Maroušková, A. Economic Considerations on Nutrient Utilization in Wastewater Management. Energies 2021, 14, 3468. [Google Scholar] [CrossRef]
- Maroušek, J.; Strunecký, O.; Kolář, L.; Vochozka, M.; Kopecky, M.; Maroušková, A.; Batt, J.; Poliak, M.; Šoch, M.; Bartoš, P.; et al. Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing. Energy Sour. Part A Recover. Util. Environ. Eff. 2020, 1–10. [Google Scholar] [CrossRef]
- Munoz-Cupa, C.; Hu, Y.; Xu, C.; Bassi, A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. Sci. Total. Environ. 2020, 754, 142429. [Google Scholar] [CrossRef]
- Mutchamua, H.H.G.; Bolsan, A.C.; Bonatto, C.; Chini, A.; Venturin, B.; Hollas, C.E.; Bonassa, G.; Antes, F.G.; Treichel, H.; Di Luccio, M.; et al. Sludge management in lagoons: The role of denitrification as a function of carbon biodegradation. Bioresour. Technol. Rep. 2021, 15, 100802. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Babel, S. Insights on microbial fuel cells for sustainable biological nitrogen removal from wastewater: A review. Environ. Res. 2021, 204, 112095. [Google Scholar] [CrossRef]
- Palanisamy, G.; Jung, H.-Y.; Sadhasivam, T.; Kurkuri, M.D.; Kim, S.C.; Roh, S.-H. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. J. Clean. Prod. 2019, 221, 598–621. [Google Scholar] [CrossRef]
- Park, Y.; Park, S.; Nguyen, V.K.; Yu, J.; Torres, C.I.; Rittmann, B.E.; Lee, T. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater. Chem. Eng. J. 2017, 316, 673–679. [Google Scholar] [CrossRef]
- Peng, L.; Liu, Y.; Gao, S.-H.; Chen, X.; Ni, B.-J. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes. Water Res. 2016, 89, 1–8. [Google Scholar] [CrossRef]
- Pereira, J.H.; Reis, A.C.; Homem, V.; Silva, J.A.; Alves, A.; Borges, M.T.; Boaventura, R.A.; Vilar, V.J.; Nunes, O.C. Solar photocatalytic oxidation of recalcitrant natural metabolic by-products of amoxicillin biodegradation. Water Res. 2014, 65, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Puri, A.; Padda, K.P.; Chanway, C.P. Evaluating lodgepole pine endophytes for their ability to fix nitrogen and support tree growth under nitrogen-limited conditions. Plant Soil 2020, 455, 271–287. [Google Scholar] [CrossRef]
- Rahimi, S.; Modin, O.; Mijakovic, I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv. 2020, 43, 107570. [Google Scholar] [CrossRef]
- Reis, V.M.; Estrada-De Los Santos, P.; Tenorio-Salgado, S.; Vogel, J.; Stoffels, M.; Guyon, S.; Mavingui, P.; Baldani, V.L.D.; Schmid, M.; Baldani, J.I.; et al. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int. J. Syst. Evolut. Microbiol. 2004, 54, 2155–2162. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Lv, Y.; Wang, Y.; Li, X. Effect of heterotrophic anodic denitrification on anolyte pH control and bioelectricity generation enhancement of bufferless microbial fuel cells. Chemosphere 2020, 257, 127251. [Google Scholar] [CrossRef]
- Sun, H.; Xu, S.; Zhuang, G.; Zhuang, X. Performance and recent improvement in microbial fuel cells for simultaneous carbon and nitrogen removal: A review. J. Environ. Sci. 2016, 39, 242–248. [Google Scholar] [CrossRef]
- Virdis, B.; Rabaey, K.; Yuan, Z.; Keller, J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res. 2008, 42, 3013–3024. [Google Scholar] [CrossRef]
- Vitousek, P.; Hättenschwiler, S.; Olander, L.; Allison, S. Nitrogen and Nature. Ambio 2002, 31, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, S. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function. Sci. Total. Environ. 2020, 756, 144145. [Google Scholar] [CrossRef]
- Yu, C.-P.; Liang, Z.; Das, A.; Hu, Z. Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Res. 2011, 45, 1157–1164. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, C.; Huang, X.; Liu, J.; Lu, L.; Peng, K.; Li, S. Research progress in solid carbon source–based denitrification technologies for different target water bodies. Sci. Total. Environ. 2021, 782, 146669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, H.; Zhang, C.; Zhang, G.; Yang, F.; Yuan, G.-E.; Gao, F. Simultaneous nitrogen and carbon removal in a single chamber microbial fuel cell with a rotating biocathode. Process. Biochem. 2013, 48, 893–900. [Google Scholar] [CrossRef]
- Zhang, M.; Pan, L.; Liu, L.; Su, C.; Dou, L.; Su, Z.; He, Z. Phosphorus and nitrogen removal by a novel phosphate-accumulating organism, Arthrobacter sp. HHEP5 capable of heterotrophic nitrification-aerobic denitrification: Safety assessment, removal characterization, mechanism exploration and wastewater treatment. Bioresour. Technol. 2020, 312, 123633. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, H.; Xu, P.; Li, W.; Feng, W.; Liu, R. Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou Irrigation District. J. Clean. Prod. 2021, 298, 126783. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Q.; Huang, G.; Zhang, L.; Liu, Y. Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell. Int. J. Hydrogen Energy 2020, 45, 34099–34109. [Google Scholar] [CrossRef]
Samples | Voltage (mV) | Current (mA) | Quantity of Electric Charge (C) | Power Density (mW·m−3) |
---|---|---|---|---|
T-open | 770 | - | - | - |
T-1000 | 181 | 0.181 | 281 | 186.7 |
T-500 | 108 | 0.217 | 337 | 134.1 |
T-200 | 48 | 0.240 | 372 | 65.5 |
T-100 | 24 | 0.238 | 369 | 32.3 |
Sample | Shannon | Simpson | Ace | Chao1 | Coverage |
---|---|---|---|---|---|
T-open | 4.78 | 0.0211 | 1022 | 1020.6 | 0.990725 |
T-100 | 4.14 | 0.0421 | 763 | 759.0 | 0.993125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Hou, D.; Zhang, S.; Cao, X.; Wang, H.; Li, X. Aerobic Denitrification Is Enhanced Using Biocathode of SMFC in Low-Organic Matter Wastewater. Water 2021, 13, 3512. https://doi.org/10.3390/w13243512
Zhang H, Hou D, Zhang S, Cao X, Wang H, Li X. Aerobic Denitrification Is Enhanced Using Biocathode of SMFC in Low-Organic Matter Wastewater. Water. 2021; 13(24):3512. https://doi.org/10.3390/w13243512
Chicago/Turabian StyleZhang, Haochi, Dengfeng Hou, Shuai Zhang, Xian Cao, Hui Wang, and Xianning Li. 2021. "Aerobic Denitrification Is Enhanced Using Biocathode of SMFC in Low-Organic Matter Wastewater" Water 13, no. 24: 3512. https://doi.org/10.3390/w13243512
APA StyleZhang, H., Hou, D., Zhang, S., Cao, X., Wang, H., & Li, X. (2021). Aerobic Denitrification Is Enhanced Using Biocathode of SMFC in Low-Organic Matter Wastewater. Water, 13(24), 3512. https://doi.org/10.3390/w13243512