On the Understanding of the Hydrodynamics and the Causes of Saltwater Intrusion on Lagoon Tidal Springs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Analysis
2.3. Tide Component Extraction
2.4. Cross-Correlation Analysis
3. Results and Discussion
3.1. Driving Forces Influencing the Salt Water Intrusion at the Spring
3.2. Mechanisms Influencing the Driving Forces of Salt Water Intrusion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons Ltd.: West Sussex, UK, 2007; ISBN 9781118684986. [Google Scholar]
- Groves, C. Methods in Karst Hydrogeology; Goldscheider, N., Drew, D., Eds.; Taylor and Francis Group: London, UK, 2007; ISBN 9780415428736. [Google Scholar]
- Kresic, N.; Stevanovic, Z. Groundwater and Hydrology in Springs; Kresic, N., Stevanovic, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; p. 567. ISBN 9781856175029. [Google Scholar]
- COSOD II. Report of the Second Conference on Scientific Ocean Drilling COSOD II; European Science Foundation: Strassbourg, France, 1987; p. 154. ISBN 2-903148-52-X. [Google Scholar]
- Karanjac, J.; Gunay, G. Dumanli Spring, Turkey—The largest karstic spring in the world? J. Hydrol. 1980, 45, 219–231. [Google Scholar] [CrossRef]
- Scott, T.M.; Means, G.H.; Means, R.C.; Meegan, R.P. First Magnitude Springs of Florida; Florida Geological Survey: Tallahassee, FL, USA, 2002.
- Scott, T.; Means, G.; Rebecca, M.; Means, R.; Upchurch, S.; Copeland, R.E.; Jones, J.; Roberts, T.; Willet, A. Springs of Florida; Florida Geological Survey: Tallahassee, FL, USA, 2004.
- Kresic, N. Foreword: Ground water in karst. Ground Water 2009, 47, 319–320. [Google Scholar] [CrossRef]
- Springer, A.E.; Stevens, L.E. Spheres of discharge of springs. Hydrogeol. J. 2009, 17, 83–93. [Google Scholar] [CrossRef]
- Taniguchi, M.; Burnett, W.C.; Cable, J.E.; Turner, J.V. Investigation of submarine groundwater discharge. Hydrol. Process. 2002, 16, 2115–2129. [Google Scholar] [CrossRef]
- UNESCO. Submarine Groundwater Discharge; United Naions Educational, Scientific and Cultural Organization: Paris, France, 2014; ISBN 9780128130810. [Google Scholar]
- Vineyard, J.; Feder, G. Springs of Missouri; Missouri Department of Natural Resources: Jefferson City, MO, USA, 1982.
- Bogli, A. Karst Hydrology and Physical Speleology; Springer: Amsterdam, The Netherlands, 1980; ISBN 0387100989. [Google Scholar]
- Batllori Sampedro, E.; González Piedra, J.I.; Díaz Sosa, J.; Febles Patrón, J.L. Caracterización hidrológica de la región costera noroccidental del estado de yucatán, México. Investig. Geogr. 2006, 59, 74–92. (In Spanish) [Google Scholar] [CrossRef]
- Rey, W. Evaluación del Peligro a la Inundación Inducida por Eventos Extremos de Tormenta en el Norte de la Península de Yucatán; Universidad Autónoma de Yucatán: Mérida, México, 2017; p. 121. (In Spanish) [Google Scholar]
- Lane, E. The Spring Creek Submarine Springs Group, Wakulla County, Florida; Florida Geological Survey: Tallahassee, FL, USA, 2001.
- Davis, J.H.; Verdi, R. Groundwater flow cycling between a submarine spring and an inland fresh water spring. Ground Water 2014, 52, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Perry, E. Geologic and environmental aspects of surface cementation, north coast, Yucatan, Mexico. Geology 1989, 17, 818–821. [Google Scholar] [CrossRef]
- Bonacci, O.; Bojanic, D. Rhytmic karst springs. Hydrol. Sci. J. 1991, 36, 35–47. [Google Scholar] [CrossRef]
- Valle-Levinson, A.; Mariño-Tapia, I.; Enriquez, C.; Waterhouse, A.F. Tidal variability of salinity and velocity fields related to intense point-source submarine groundwater discharges into the Coastal Ocean. Limnol. Oceanogr. 2011, 56, 1213–1224. [Google Scholar] [CrossRef]
- Williams, P.W. Hydrogeology of the Waikouropupu springs: A major tidal karst resurgence in northwest Nelson (New Zealand). J. Hydrol. 1977, 35, 73–92. [Google Scholar] [CrossRef]
- McCormack, T.; Gill, L.W.; Naughton, O.; Johnston, P.M. Quantification of submarine/intertidal groundwater discharge and nutrient loading from a lowland karst catchment. J. Hydrol. 2014, 519, 2318–2330. [Google Scholar] [CrossRef]
- Schuler, P.; Duran, L.; McCormack, T.; Gill, L. Submarine and intertidal groundwater discharge through a complex multi-level karst conduit aquifer. Hydrogeol. J. 2018, 26, 2629–2647. [Google Scholar] [CrossRef] [Green Version]
- Holliday, D.; Stieglitz, T.C.; Ridd, P.V.; Read, W.W. Geological controls and tidal forcing of submarine groundwater discharge from a confined aquifer in a coastal sand dune system. J. Geophys. Res. Oceans 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Fleury, P.; Bakalowicz, M.; de Marsily, G. Submarine springs and coastal karst aquifers: A review. J. Hydrol. 2007, 339, 79–92. [Google Scholar] [CrossRef]
- Parra, S.M.; Valle-Levinson, A.; Mariño-Tapia, I.; Enriquez, C. Salt intrusion at a submarine spring in a fringing reef lagoon. J. Geophys. Res. Oceans 2015, 120, 2736–2750. [Google Scholar] [CrossRef]
- Parra, S.M.; Valle-Levinson, A.; Mariño-Tapia, I.; Enriquez, C.; Candela, J.; Sheinbaum, J. Seasonal variability of saltwater intrusion at a point-source submarine groundwater discharge. Limnol. Oceanogr. 2016, 61, 1245–1258. [Google Scholar] [CrossRef]
- Febles, J.; Batllori, E. Fluctuación diurna del nivel hidrostático en petenes de la cuenca costera noroccidental del estado de Yucatán: Efecto del desazolve y la canalización de manantiales. Tecnol. Cienc. Agua 1995, 10, 5–19. (In Spanish) [Google Scholar]
- Marin, E. Modelación de la Hidrodinámica de un Sistema Lagunar en Humedal Costero con Descargas de Agua Subterránea (DAS) y su Relación con la Distribución de Algunas Especies de Icitofauna; Universidad Nacional Autónoma De México: Mexico City, Mexico, 2016. (In Spanish) [Google Scholar]
- Rey, W. Evaluación Hidrodinámica y Modelación Numérica de la Laguna la Carbonera, Yucatán; Universidad Autónoma de Yucatán: Yucatán, Mexico, 2012. (In Spanish) [Google Scholar]
- Back, W. The Yucatan Peninsula, Mexico. In Karst Hydrogeology and Human Activities: Impacts, Consequences and Implications: IAH International Contributions to Hydrogeology 20; IAH—International Contributions to Hydrogeology; Drew, D., Hötzl, H., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 14–19. ISBN 978-90-5410-464-3. [Google Scholar]
- Doehring, D.; Butler, J. Hydrogeologic constraints on Yucatan’s development. Sci. Am. Assoc. Adv. Sci. 1987, 186, 591–595. [Google Scholar]
- INEGI. Estudio Hidrológico del Estado de Yucatán; Instituto Nacional de Estadística, Geografía e Informática: Aguascalientes, Mexico, 2002. (In Spanish) [Google Scholar]
- Villasuso, M.; Méndez, R. A conceptual model of the Aquifer of the Yucatán Peninsula. In Population, Development, and Environment on the Yucatan Peninsula: From Ancient Maya to 2030; Lutz, W., Prieto, L., Sanderson, W., Eds.; IIASA: Laxenburg, Austria, 2000; pp. 120–139. ISBN 3-7045-0138-7. [Google Scholar]
- SGM; INEGI. Carta Geologico-Minera Tizimin F16-7; Servicio Geológico Mexicano: Pachuca, Mexico, 2006. (In Spanish)
- Canul-Macario, C.; Salles, P.; Hernández-Espriú, A.; Pacheco-Castro, R. Empirical relationships of groundwater head–salinity response to variations of sea level and vertical recharge in coastal confined karst aquifers. Hydrogeol. J. 2020, 28, 1679–1694. [Google Scholar] [CrossRef]
- Pino, M.J.V.; Y Pinto, I.A.S.; Macario, C.C.; Salazar, R.C.; Escobedo, G.B.; Cetina, J.S.; Euán, P.P.; Argüelles, C.P. Hydrogeology and conceptual model of the karstic coastal aquifer in Northern Yucatan State, Mexico. Trop. Subtrop. Agroecosyst. 2011, 13, 243–260. [Google Scholar]
- Perry, E.; Velazquez-Oliman, G.; Marin, L. The hydrogeochemistry of the karst aquifer system of the northern yucatan peninsula, Mexico. Int. Geol. Rev. 2002, 44, 191–221. [Google Scholar] [CrossRef]
- Escolero, O.; Marin, L.; Steinich, B.; Pacheco, J. Delimitation of a hydrogeological reserve for a city within a karstic aquifer: The Merida, Yucatan example. Landsc. Urban Plan. 2000, 51, 53–62. [Google Scholar] [CrossRef]
- Marín, L.E.; Steinich, B.; Pacheco, J.; Escolero, O.A. Hydrogeology of a contaminated sole-source karst aquifer, Mérida, Yucatán, Mexico. Geofis. Int. 2000, 39, 359–365. [Google Scholar] [CrossRef]
- Pacheco, A.J.; Cabrera, S.A. Groundwater contamination by nitrates in the Yucatan Peninsula, Mexico. Hydrogeol. J. 1997, 5, 47–53. [Google Scholar] [CrossRef]
- Pacheco, J.; Marín, L.; Cabrera, A.; Steinich, B.; Escolero, O. Nitrate temporal and spatial patterns in 12 water-supply wells, Yucatan, Mexico. Environ. Geol. 2001, 40, 708–715. [Google Scholar] [CrossRef]
- Zavala, J.; de Buen, R.; Romero, R.; Hernández, F. Tendencias del nivel del mar en las costas mexicanas. In Vulnerabilidad de las Zonas Costeras Mexicanas ante el Cambio Climático; Botello, A.V., Villanueva-Fragoso, S., Gutiérrez, J., Rojas Galaviz, J.L., Eds.; Gobierno del Estado de Tabasco: Villahermosa, Mexico, 2011. (In Spanish) [Google Scholar]
- Goujon, A.; Kohler, I.; Lutz, W. Future population and education trends: Scenarios to 2030 by socioecological region. In Population, Development, and Environment on the Yucatán Peninsula: From Ancient Maya to 2030; Lutz, W., Prieto, L., Sanderson, W., Eds.; International Institute for Applied Systems Analysis: Luxemburg, Austria, 2000. [Google Scholar]
- Herrera-Silveira, J.A.; Morales-Ojeda, S.M. Evaluation of the health status of a coastal ecosystem in southeast Mexico: Assessment of water quality, phytoplankton and submerged aquatic vegetation. Mar. Pollut. Bull. 2009, 59, 72–86. [Google Scholar] [CrossRef]
- García, A.; Xool, M.; Euán, J.; Munguía, A.; Cervera, M. La Costa de Yucatán En La Perspectiva Del Desarrollo Turístico Del Desarrollo Turístico; CONABIO, Ed.; SEMARNAT-CONABIO: Mexico City, Mexico, 2011; ISBN 9786077607441. (In Spanish) [Google Scholar]
- Ketabchi, H.; Mahmoodzadeh, D.; Ataie-Ashtiani, B.; Simmons, C.T. Sea-level rise impacts on seawater intrusion in coastal aquifers: Review and integration. J. Hydrol. 2016, 535, 235–255. [Google Scholar] [CrossRef]
- Lankford, R. Coastal lagoons of Mexico their origin and classification. In Estuarine Processes; Wiley, M., Ed.; Academic Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Mariño-Tapia, I.; Enriquez, C.; Medellin, G.; González, M.; Uc, E.; Medina, I. Estudios Batimétricos, Hidrodinámicos y de Calidad de Agua de Lagunas Costeras de Yucatán; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida: Merida, México, 2011. (In Spanish) [Google Scholar]
- Bonilla-Gómez, J.L. Environmental Influences on the Abundance of Dominant Fishes in a Very Shallow Tropical Coastal Lagoon in Northwestern Yucatan Peninsula, Mexico. J. Mar. Sci. Res. Dev. 2013, 3, 1–11. [Google Scholar] [CrossRef]
- Kjerfve, B. Coastal lagoons. In Coastal Lagoon Processes; Kjerfve, B., Ed.; Elsevier Oceanography Series: Amsterdam, The Netherlands, 1994; pp. 1–8. [Google Scholar]
- Luis Bonilla-Gómez, J.; Badillo-Alemán, M.; Gallardo-Torres, A.; Chiappa-Carrara, X. Temporal Variation, Growth and Natural Mortality of Two Species of Mojarras (Perciformes: Gerreidae). Rev. Mar. Cost. 2013, 5, 57–67. [Google Scholar] [CrossRef]
- Servicio Geologico Mexicano Cartografía Geológica de la República Mexicana Escala 1:250,000. Available online: https://datos.gob.mx/busca/dataset/cartografia-geologica-de-la-republica-mexicana-escala-1-250000/resource/ae3cf07d-b7e7-4efa-a5ab-faba976a1c1f (accessed on 7 April 2021). (In Spanish).
- Lewis, E.L. The Practical Salinity Scale 1978 and Its Antecedents. Mar. Geod. 1980, 5, 351–357. [Google Scholar] [CrossRef]
- McDougall, T.J.; Barker, P.M. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. Scor/Iapso WG 2011, 127, 1–28. [Google Scholar]
- Universidad Nacional Autónoma de México Red Universitaria de Observatorios Atmosféricos de la Universidad Nacional Autónoma de México. Available online: https://www.ruoa.unam.mx/ (accessed on 4 July 2021). (In Spanish).
- Ferris, J.G. Cyclic Fluctuations of Water Level as a Basis for Determining Aquifer Transmissibility; United States Department of the Interior Geological Survey, Water Resources Division, Groundwater Branch: Washington, DC, USA, 1952.
- Kjerfve, B. Tides of the Caribbean Sea. J. Geophys. Res. 1981, 86, 4243–4247. [Google Scholar] [CrossRef]
- Friedrichs, C.T.; Madsen, O.S. Nonlinear diffusion of the tidal signal in frictionally dominated embayments. J. Geophys. Res. 1992, 97, 5637. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmic analysis including error estimates in MATLAB and T_Tide. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Boon, J.D. Secrets of the Tide: Tide and Tidal Current Analysis and Predictions, Storm Surges and Sea Level Trends; Woodhead Publishing Limited: Sawston, UK, 2004; ISBN 9781904275176. [Google Scholar]
- Tenorio-Fernandez, L.; Gomez-Valdes, J.; Marino-Tapia, I.; Enriquez, C.; Valle-Levinson, A.; Parra, S.M. Tidal dynamics in a frictionally dominated tropical lagoon. Cont. Shelf Res. 2016, 114, 16–28. [Google Scholar] [CrossRef]
- Chatfield, C.; Xing, H. The Analysis of Time Series: An Introduction with R, 7th ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- White, J.K.; Roberts, T.O.L. 2. The significance of groundwater tidal fluctuations. In Groundwater Problems in Urban Areas; Springer: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Friedrichs, C. Baroclinic tides in channelized estuaries. In Contemporary Issues in Estuarine Physics; Valle-Levinson, A., Ed.; Cambridge University Press: Cambridge, MA, USA, 2010; pp. 27–61. [Google Scholar]
- Spaulding, M.L. Modeling of Circulation and Dispersion in Coastal Lagoons; Kjerfve, B., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Medina-Rosado, J.A. Caracterización Geohidrológica del Acuífero de la Duna Costera de Sisal, Yucatán; Universidad Autónoma de Yucatán: Yucatán, Mexico, 2020. [Google Scholar]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.; Jevrejava, S.; Lebermann, A.; Merrifield, M.; Milne, G.; Nerem, R.S.; Nunn, P.; et al. Sea Level Change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Jouzel, J., van de Wal, R., Woodworth, P., Xiao, C., Eds.; Cambridge University Press: New York, NY, USA, 2013; p. 227. [Google Scholar]
- IPCC. Summary for Policymakers; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Mazumder, S.K. Flow Transition Design in Hydraulic Structures; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Winant, C. Wind and tidally driven flows in a semienclosed basin. Contemp. Issues Estuar. Phys. 2010, 125–144. [Google Scholar] [CrossRef]
Lagoon | Channel | Aquifer | |||||
---|---|---|---|---|---|---|---|
L1 | L2 | C1 | C2 | C3 | SP | B9 | |
lag (min) | 150 | 200 | 210 | 130 | 40 | 40 | 30 |
r | 0.79 | 0.77 | 0.76 | 0.83 | 0.94 | 0.94 | 0.96 |
Component | Sea | Lagoon | Channel and Spring | Aquifer | |||||
---|---|---|---|---|---|---|---|---|---|
SE | L1 | L2 | C1 | C2 | C3 | SP | B9 | ||
K1 | Amp. (m) | 0.2218 | 0.0837 | 0.0732 | 0.0611 | 0.0698 | 0.0963 | 0.0970 | 0.1201 |
Ratio | 100% | 37.7% | 33.0% | 27.5% | 31.5% | 43.4% | 43.7% | 54.1% | |
Phase (h) | 0 | 2.63 | 3.34 | 3.35 | 2.20 | 0.83 | 0.81 | 0.57 | |
O1 | Amp. (m) | 0.1696 | 0.0575 | 0.0500 | 0.0403 | 0.0501 | 0.0772 | 0.0774 | 0.0948 |
Ratio | 100% | 33.9% | 29.5% | 23.8% | 29.5% | 45.5% | 45.6% | 55.9% | |
Phase (h) | 0 | 2.61 | 3.47 | 3.84 | 2.43 | 1.02 | 0.99 | 0.68 | |
M2 | Amp. (m) | 0.0674 | 0.019 | 0.0153 | 0.0102 | 0.0141 | 0.0323 | 0.0324 | 0.0344 |
Ratio | 100% | 28.2% | 22.7% | 15.1% | 20.9% | 47.9% | 48.1% | 51.0% | |
Phase (h) | 0 | 2.0 | 2.7 | 3.0 | 1.2 | 0.0 | 0.0 | 0.2 | |
N2 | Amp. (m) | 0.025 | 0.0052 | 0.0044 | 0.004 | 0.0051 | 0.0109 | 0.0109 | 0.0123 |
Ratio | 100% | 20.8% | 17.6% | 16.0% | 20.4% | 43.6% | 43.6% | 49.2% | |
Phase (h) | 0 | 2.9 | 3.4 | 4.4 | 2.1 | 0.5 | 0.5 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco-Castro, R.; Salles, P.; Canul-Macario, C.; Paladio-Hernandez, A. On the Understanding of the Hydrodynamics and the Causes of Saltwater Intrusion on Lagoon Tidal Springs. Water 2021, 13, 3431. https://doi.org/10.3390/w13233431
Pacheco-Castro R, Salles P, Canul-Macario C, Paladio-Hernandez A. On the Understanding of the Hydrodynamics and the Causes of Saltwater Intrusion on Lagoon Tidal Springs. Water. 2021; 13(23):3431. https://doi.org/10.3390/w13233431
Chicago/Turabian StylePacheco-Castro, Roger, Paulo Salles, Cesar Canul-Macario, and Alejandro Paladio-Hernandez. 2021. "On the Understanding of the Hydrodynamics and the Causes of Saltwater Intrusion on Lagoon Tidal Springs" Water 13, no. 23: 3431. https://doi.org/10.3390/w13233431