Water Supply Increases N Acquisition and N Resorption from Old Branches in the Leafless Shrub Calligonum caput-medusae at the Taklimakan Desert Margin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Sample Collection
2.4. Laboratory Analysis
2.5. Calculation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil N status
3.2. Plant Biomass and Relative Growth Rate
3.3. Plant N Status
3.4. N Resorption and Utilization
3.5. Controlling Factors of Plant Growth and N Utilization as Well as Corelationships between Them
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein Goldewijk, K.; Beusen, A.; Doelman, J.; Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953. [Google Scholar] [CrossRef]
- Hu, Y.L.; Zeng, D.H.; Fan, Z.P.; Chen, G.S.; Zhao, Q.; Pepper, D. Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China. J. Arid Environ. 2008, 72, 2193–2200. [Google Scholar] [CrossRef]
- Lei, J.Q.; Li, S.Y.; Jin, Z.Z.; Fan, J.L.; Wang, H.F. Comprehensive eco-environmental effects of the shelter-forest ecological engineering along the Tarim Desert Highway. Chin. Sci. Bull. 2008, 53, 190–202. [Google Scholar] [CrossRef]
- Wei, W.; Chen, L.D.; Yang, L.; Samadani, F.F.; Sun, G. Microtopography recreation benefits ecosystem restoration. Environ. Sci. Technol. 2012, 46, 10875–10876. [Google Scholar] [CrossRef]
- Xu, X.W.; Li, B.W.; Wang, X.J. Progress in study on irrigation practice with saline groundwater on sandlands of Taklimakan Desert hinterland. Chin. Sci. Bull. 2006, 51, 161–166. [Google Scholar] [CrossRef]
- Shan, L.S.; Li, Y.; Zhao, R.F.; Zhang, X.M. Effects of deficit irrigation on daily and seasonal variations of trunk sap flow and its growth in Calligonum arborescens. J. Arid Land 2013, 5, 233–243. [Google Scholar] [CrossRef][Green Version]
- Li, C.; Shi, X.; Mohamad, O.A.; Gao, J.; Xu, X.; Xie, Y. Moderate irrigation intervals facilitate establishment of two desert shrubs in the Taklimakan Desert Highway Shelterbelt in China. PLoS ONE 2017, 12, e0180875. [Google Scholar] [CrossRef]
- Hooper, D.U.; Johnson, L. Nitrgen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry 1999, 46, 247–293. [Google Scholar] [CrossRef]
- Misra, A.; Tyler, G. Effects of wet and dry cycles in calcareous soil on mineral nutrient uptake of two grasses, Agrostis stolonifera L. and Festuca ovina L. Plant Soil 2000, 224, 297–303. [Google Scholar] [CrossRef]
- Wang, C.H.; Wan, S.Q.; Xing, X.R.; Zhang, L.; Han, X. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol. Biochem. 2006, 38, 1101–1110. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Dietze, M.C.; Jackson, R.B.; Phillips, R.P.; Rhoades, C.C.; Rustad, L.E.; Vose, J.M. Forest biogeochemistry in response to drought. Glob. Chang. Biol. 2016, 22, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.B.; Bowker, M.A.; Tao, Y.; Wu, L.; Zhang, Y.M. Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics. Sci. Total Environ. 2018, 626, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.H.; Lin, L.; Shao, S.L.; He, A.G.; Ying, Y.Q. Effects of simulated nitrogen deposition on Phyllostachys edulis (Carr.) seedlings under different watering conditions: Is seedling drought tolerance related to nitrogen metabolism? Plant Soil 2020, 448, 539–552. [Google Scholar] [CrossRef]
- Zhou, X.B.; Zhang, Y.M.; Niklas, K.J. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: A comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China. Ann. Bot. 2014, 113, 501–511. [Google Scholar] [CrossRef]
- Huang, G.; Su, Y.G.; Mu, X.H.; Li, Y. Foliar nutrient resorption responses of three life-form plants to water and nitrogen additions in a temperate desert. Plant Soil 2018, 424, 479–489. [Google Scholar] [CrossRef]
- Li, K.H.; Liu, X.J.; Geng, F.Z.; Xu, W.; Lv, J.L.; Dore, A.J. Inorganic nitrogen deposition in arid land ecosystems of Central Asia. Environ. Sci. Pollut. Res. 2021, 28, 31861–31871. [Google Scholar] [CrossRef] [PubMed]
- Killingbeck, K.T. The terminological jungle revisited: Making a case for use of the term resorption. Oikos 1986, 46, 263–264. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 1992, 62, 365–392. [Google Scholar] [CrossRef]
- Killingbeck, K.T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 1996, 77, 1716–1727. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S., III. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res. 1999, 30, 1–67. [Google Scholar]
- Wright, I.J.; Westoby, M. Nutrient concentration, resorption and lifespan: Leaf traits of Australian sclerophyll species. Funct. Ecol. 2003, 17, 10–19. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Houlton, B.Z.; Smith, W.K.; Marklein, A.R.; Running, S.W. Patterns of new versus recycled primary production in the terrestrial biosphere. Proc. Natl. Acad. Sci. USA 2013, 110, 12733–12737. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.Z.; Liu, L.L.; Peng, S.S.; Peñuelas, J.; Zeng, H.; Piao, S.L. Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation. Ecosystems 2016, 19, 698–709. [Google Scholar] [CrossRef]
- Liu, P.; Huang, J.H.; Sun, O.J.; Han, X. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 2010, 162, 771–780. [Google Scholar] [CrossRef]
- Suseela, V.; Tharayil, N.; Xing, B.S.; Dukes, J.S. Warming and drought differentially influence the production and resorption of elemental and metabolic nitrogen pools in Quercus rubra. Glob. Chang. Biol. 2015, 21, 4177–4195. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Lü, X.T.; Yang, K.; Zhu, J. Leaf nutrient dynamics and nutrient resorption: A comparison between larch plantations and adjacent secondary forests in Northeast China. J. Plant Ecol. 2016, 9, 165–173. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Negative effects of fertilization on plant nutrient resorption. Ecology 2015, 96, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Brant, A.N.; Chen, H.Y.H. Patterns and mechanisms of nutrient resorption in plants. Crit. Rev. Plant Sci. 2015, 34, 471–486. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob. Ecol. Biogeogr. 2009, 18, 11–18. [Google Scholar] [CrossRef]
- Ren, H.Y.; Xu, Z.W.; Huang, J.H.; Lü, X.T.; Zeng, D.H.; Yuan, Z.Y.; Han, X.G.; Fang, Y.T. Increased precipitation induces a positive plant-soil feedback in a semi-arid grassland. Plant Soil 2015, 389, 211–223. [Google Scholar] [CrossRef]
- Rivero, R.M.; Kojima, M.; Gepstein, A.; Sakakibara, H.; Mittler, R.; Gepstein, S.; Blumwald, E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA 2007, 104, 19631–19636. [Google Scholar] [CrossRef] [PubMed]
- Lajtha, K. Nutrient reabsorption efficiency and the response to phosphorus fertilization in the desert shrub Larrea-tridentata (Dc) Cov. Biogeochemistry 1987, 4, 265–276. [Google Scholar] [CrossRef]
- Huang, J.Y.; Yu, H.L.; Li, L.H.; Yuan, Z.Y.; Bartels, S. Water supply changes N and P conservation in a perennial grass Leymuschinensis. J. Integr. Plant Biol. 2009, 51, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Khasanova, A.; James, J.J.; Drenovsky, R.E. Impacts of drought on plant water relations and nitrogen nutrition in dryland perennial grasses. Plant Soil 2013, 372, 541–552. [Google Scholar] [CrossRef]
- Ruehr, N.K.; Offermann, C.A.; Gessler, A.; Winkler, J.B.; Ferrio, J.P.; Buchmann, N.; Barnard, R.L. Drought effects on allocation of recent carbon: From beech leaves to soil CO2 efflux. New Phytol. 2009, 184, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.D.; Palmer, S.C.F. The influence of canopy cover and other factors upon the regeneration of Scots pine and its associated ground flora within Glen Tanar National Nature Reserve. Forestry 2000, 73, 37–49. [Google Scholar] [CrossRef]
- Zhang, J.G.; Lei, J.Q.; Wang, Y.D.; Zhao, Y.; Xu, X.W. Survival and growth of three afforestation species under high saline drip irrigation in the Taklimakan Desert, China. Ecosphere 2016, 7, e01285. [Google Scholar] [CrossRef]
- Nong, H.T.; Tateishi, R.; Suriyasak, C.; Kobayashi, T.; Oyama, Y.; Chen, W.J.; Matsumoto, R.; Hamaoka, N.; Iwaya-Inoue, M.; Ishibashi, Y. Effect of seedling nitrogen condition on subsequent vegetative growth stages and its relationship to the expression of nitrogen transporter genes in rice. Plants 2020, 9, 861. [Google Scholar] [CrossRef] [PubMed]
- Panda, M.M.; Reddy, M.D.; Sharma, A.R. Yield performance of rainfed lowland rice as affected by nursery fertilization under conditions of intermediate deepwater (15–50 cm) and flash floods. Plant Soil 1991, 132, 65–71. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Gower, S.T.; Wang, C.K.; Cyr, P.; Veldhuis, H. Nitrogen dynamics of a boreal black spruce wildfire chronosequence. Biogeochemistry 2006, 81, 1–16. [Google Scholar] [CrossRef]
- Gui, D.W.; Lei, J.Q.; Zeng, F.J. Farmland management effects on the quality of surface soil during oasification in the southern rim of the Tarim Basin in Xinjiang, China. Plant Soil Environ. 2010, 56, 348–356. [Google Scholar] [CrossRef]
- Dordas, C.; Sioulas, C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Res. 2009, 110, 35–43. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Carter, M.R. Soil Sampling and Methods of Analysis; Lewis Publishers CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Shaver, G.R.; Melillo, J.M. Nutrient budgets of marsh plants: Efficiency concepts and relation to availability. Ecology 1984, 65, 1491–1510. [Google Scholar] [CrossRef]
- Lefcheck, J.S. Piecewise SEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Tang, J.W.; Luyssaert, S.; Richardson, A.D.; Kutsch, W.; Janssens, I.A. Steeper declines in forest photosynthesis than respiration explain age-driven decreases in forest growth. Proc. Natl. Acad. Sci. USA 2014, 111, 8856–8860. [Google Scholar] [CrossRef] [PubMed]
- Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos 1997, 79, 439–449. [Google Scholar] [CrossRef]
- Farley, K.A.; Kelly, E.F. Effects of afforestation of a páramo grassland on soil nutrient status. For. Ecol. Manag. 2004, 195, 281–290. [Google Scholar] [CrossRef]
- Wu, Z.T.; Dijkstra, P.; Koch, G.W.; Peñuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Patrick, L.; Cable, J.; Potts, D.; Ignace, D.; Barron-Gafford, G.; Griffith, A.; Alpert, H.; Van Gestel, N.; Robertson, T.; Huxman, T.E.; et al. Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas. Oecologia 2007, 151, 704–718. [Google Scholar] [CrossRef] [PubMed]
- Han, W.X.; Fang, J.Y.; Guo, D.L.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Vergutz, L.; Manzoni, S.; Porporato, A. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012, 82, 205–220. [Google Scholar] [CrossRef]
- Han, W.X.; Tang, L.Y.; Chen, Y.H.; Fang, J.Y. Relationship between the relative limitation and resorption efficiency of nitrogen vs phosphorus in woody plants. PLoS ONE 2013, 8, e83366. [Google Scholar] [CrossRef]
- Rejmankova, E. Nutrient resorption in wetland macrophytes: Comparison across several regions of different nutrient status. New Phytol. 2005, 167, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Kost, J.A.; Boerner, R.E.J. Foliar nutrient dynamics and nutrient use efficiency in Cornus florida. Oecologia 1985, 66, 602–606. [Google Scholar] [CrossRef]
- Li, J.Z.; Lin, S.; Taube, F.; Pan, Q.; Dittert, K. Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant Soil 2011, 340, 253–264. [Google Scholar] [CrossRef]
- Nambiar, E.K.S.; Fife, D.N. Nutrient retranslocation in temperate conifers. Tree Physiol. 1991, 9, 185–207. [Google Scholar] [CrossRef] [PubMed]
pH | Organic Matter (g kg−1) | Total N (g kg−1) | Total P (g kg−1) | Total K (g kg−1) | Inorganic N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|---|---|
8.04 | 2.18 | 0.17 | 0.49 | 14.6 | 16.71 | 1.7 | 145.7 |
Sampling Time | Age | Samples | Parameters |
---|---|---|---|
Mid-August 2011 | 4 months | Green and senesced branches, stems, and roots; soil in each sampling pot | Biomass, total N concentration in each organ, soil total N, nitrate-N (NO3−), ammonium-N (NH4+) concentrations |
Late October 2011 | 7 months | ||
Mid-August 2013 | 28 months |
Parameters | Water Addition Rate | ||
---|---|---|---|
4-Month | 7-Month | 28-Month | |
Soil inorganic N | −0.940 ** | −0.735 ** | −0.113 |
Soil total N | −0.136 | −0.168 | 0.216 |
Individual biomass | 0.947 ** | 0.984 ** | 0.995 ** |
Relative growth rate | 0.964 ** | 0.890 ** | 0.597 ** |
Total N uptake | 0.736 ** | 0.956 ** | 0.997 ** |
Green branch N concentration | −0.721 ** | −0.638 ** | 0.362 |
Senesced branch N concentration | −0.939 ** | −0.515 * | −0.685 ** |
N resorption efficiency | 0.766 ** | 0.053 | 0.665 ** |
N use efficiency | 0.491 * | 0.514 * | −0.879 ** |
Treatments | Ninorganic | Ntotal | Biomass | RGR | N pool | Ngreen | Nsenesced | NRE | NUE |
---|---|---|---|---|---|---|---|---|---|
Water (W) | 289.7 *** | 7.11 *** | 1721 *** | 96 *** | 3570 *** | 32.1 *** | 43.2 *** | 22.1 *** | 38 *** |
Age (A) | 211.2 *** | 233.3 *** | 12,700 *** | 3492 *** | 17,740 *** | 54.9 *** | 168.6 *** | 60 *** | 1161 *** |
W × A | 117.3 *** | 1.4 | 1427 *** | 19 *** | 2963 *** | 34.5 *** | 15.1 *** | 10.5 *** | 115.3 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Zeng, F.; Zhang, B.; Xue, J.; Zhang, S. Water Supply Increases N Acquisition and N Resorption from Old Branches in the Leafless Shrub Calligonum caput-medusae at the Taklimakan Desert Margin. Water 2021, 13, 3288. https://doi.org/10.3390/w13223288
Huang C, Zeng F, Zhang B, Xue J, Zhang S. Water Supply Increases N Acquisition and N Resorption from Old Branches in the Leafless Shrub Calligonum caput-medusae at the Taklimakan Desert Margin. Water. 2021; 13(22):3288. https://doi.org/10.3390/w13223288
Chicago/Turabian StyleHuang, Caibian, Fanjiang Zeng, Bo Zhang, Jie Xue, and Shaomin Zhang. 2021. "Water Supply Increases N Acquisition and N Resorption from Old Branches in the Leafless Shrub Calligonum caput-medusae at the Taklimakan Desert Margin" Water 13, no. 22: 3288. https://doi.org/10.3390/w13223288
APA StyleHuang, C., Zeng, F., Zhang, B., Xue, J., & Zhang, S. (2021). Water Supply Increases N Acquisition and N Resorption from Old Branches in the Leafless Shrub Calligonum caput-medusae at the Taklimakan Desert Margin. Water, 13(22), 3288. https://doi.org/10.3390/w13223288