A Beijing paddy field, along with in-situ experiments, was used to validate and refine the in-situ observation (IO) method to describe nonpoint source pollution (NPS) in paddy fields. Based on synchronous observed rainfall, water depth, and water quality data at two locations (1# (near inlet) and 2# (near outlet)) with large elevation differences, the evapotranspiration and infiltration loss (ET+F), runoff depth and NPS pollution load were calculated according to IO, and a common method was used to calculate ET+F. Then, the results of the different methods and locations were compared and analyzed. The results showed that 1# observation point was located at a lower position compared with 2# observation point. According to 1# observation point, there were 5 days of dry field in the drying period, which was consistent with the actual drying period, and there was a dry period of 9 days based on 2# observation point. The ET+F estimated by IO fit well with the calculated values. In the experiment, 6 overflows and 1 drainage event were identified from the observed data at locations 1# and 2#. The relative deviation of the NPS pollution of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), nitrate-nitrogen (NO
3−-N) and ammonia nitrogen (NH
4+-N) was between 0.6% and 2.0%. The water level gauge location had little influence on IO but mostly affected the water depth observations during the field drying period. The mareographs should be installed in low-lying paddy field areas to monitor water depth variation throughout the whole rice-growing season.
View Full-Text
►▼
Show Figures
This is an open access article distributed under the
Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited