Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Hydrodynamic Approach
2.3. Hydrochemical Approach
3. Results
3.1. Hydrodynamic Approach
3.2. Hydrochemical Approach
3.2.1. Electrical Conductivity and Major Ions
3.2.2. Spatial Tracing of Electrical Conductivity and Major Ions
3.2.3. Groundwater Classification
3.2.4. Groundwater Hydrochemical Facies
3.3. Time Tracing of Electrical Conductivity and Water Levels
3.3.1. At the Northern Ridge of the Catchment
3.3.2. In the Central Valley and toward the Catchment Outlet
3.3.3. At the Southern Ridge of the Catchment
3.3.4. At the Outlet of the Catchment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belemtougri, A.P.; Ducharne, A.; Tazen, F.; Oudin, L.; Karambiri, H. Understanding key factors controlling the duration of river flow intermittency: Case of Burkina Faso in West Africa. J. Hydrol. Reg. Stud. 2021, 37, 100908. [Google Scholar] [CrossRef]
- MEA. Programme National d’Approvisionnement en Eau Potable (PN-AEP); Rapport National Bilan Annuel 2020; MEA: Ouagadougou, Burkina Faso, 2021.
- De Gramont, H.M. Amelioration de la Connaissance et de la Gestion des Eaux au Burkina Faso. P162723; Annexes 1: Diagnostic sur Les Eaux Souterraines; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Lachassagne, P.; Wyns, R. Aquifères de socle. Nouveaux concepts. Application à la prospection et la gestion de la ressource en eau. Géosciences 2005, 2, 32–37. [Google Scholar]
- Boutt, D.F.; Diggins, P.; Mabee, S. A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol. J. 2010, 18, 1839–1854. [Google Scholar] [CrossRef]
- Assemian, E.A.; Kouamé, F.K.; Saley, M.B.; Ta, M.Y.; Patrice, J.; Jourda, R. Étude de la productivité d’ un aquifère de socle et approche statistique pour la détermination des tranches de profondeurs potentiellement productives: Cas de la région de Bongouanou, est de la Côte d’ Ivoire Study of hard roc. J. Water Sci. 2020, 27, 81–97. [Google Scholar]
- Koïta, M.; Sandwidi, W.J.P.; Dara, A.E. Recharge Estimation of Hard Rock Aquifers under Sahelian Climate Conditions Using Water Table Fluctuation: Case Study of Tougou Catchment, Burkina Faso. J. Water Resour. Prot. 2017, 09, 1428–1448. [Google Scholar] [CrossRef] [Green Version]
- Ilboudo, S.; Toe, A.M.; Ouedraogo, R.; Ouedraogo, M.; Guissou, I.P. Ecological Risk Assessment of Pesticide Residues in Water from Desert Locust Area in Burkina Faso. Res. J. Environ. Earth Sci. 2014, 6, 227–232. [Google Scholar] [CrossRef]
- Bretzler, A.; Lalanne, F.; Nikiema, J.; Podgorski, J.; Pfenninger, N.; Berg, M.; Schirmer, M. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Sci. Total Environ. 2017, 584–585, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Porgo, M.; Gokyay, O. Environmental impacts of gold mining in Essakane site of Burkina Faso. Hum. Ecol. Risk Assess. 2017, 23, 641–654. [Google Scholar] [CrossRef]
- de Vries, J.J.; Simmers, I. Groundwater recharge: An overview of process and challenges. Hydrogeol. J. 2002, 10, 5–17. [Google Scholar] [CrossRef]
- Scanlon, B.; Keese, K.; Flint, A.; Flint, L.; Gaye, C.B.; Edmunds, W.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Yin, L.; Hu, G.; Huang, J.; Wen, D.; Dong, J.; Wang, X.; Li, H. Groundwater-recharge estimation in the Ordos Plateau, China: Comparison of methods. Hydrogeol. J. 2011, 19, 1563–1575. [Google Scholar] [CrossRef]
- Manna, F.; Walton, K.M.; Cherry, J.A.; Parker, B.L. Mechanisms of recharge in a fractured porous rock aquifer in a semi-arid region. J. Hydrol. 2017, 555, 869–880. [Google Scholar] [CrossRef]
- Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J.T.; Bodvarsson, G.S. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods. Hydrogeol. J. 2002, 10, 180–204. [Google Scholar] [CrossRef]
- Hamza, M.H.; Added, A.; Rodríguez, R.; Abdeljaoued, S.; Ben Mammou, A. A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf aquifer, Northern Tunisia). J. Environ. Manag. 2007, 84, 12–19. [Google Scholar] [CrossRef]
- Walker, D.; Parkin, G.; Schmitter, P.; Gowing, J.; Tilahun, S.A.; Haile, A.T.; Yimam, A.Y. Insights From a Multi-Method Recharge Estimation Comparison Study. Groundwater 2019, 57, 245–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Fernández-Mejuto, M.; Andreu, J.M.; García-Sánchez, E.; Palencia, R. An Assessment of Groundwater Recharge at A Regional Scale for Sustainable Resource Management: Province of Alicante (SE Spain). Water 2021, 13, 862. [Google Scholar] [CrossRef]
- Zagana, E.; Obeidat, M.; Kuells, C.; Udluft, P. Chloride, hydrochemical and isotope methods of groundwater recharge estimation in eastern Mediterranean areas: A case study in Jordan. Hydrol. Process. 2007, 21, 2112–2123. [Google Scholar] [CrossRef]
- Sibanda, T.; Nonner, J.C.; Uhlenbrook, S. Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe. Hydrogeol. J. 2009, 17, 1427–1441. [Google Scholar] [CrossRef]
- Marei, A.; Khayat, S.; Weise, S.; Ghannam, S.; Sbaih, M.; Geyer, S. Estimation de la recharge hydrogéologique par la méthode du bilan massique des chlorures en Cisjordanie, Palestine. Hydrol. Sci. J. 2010, 55, 780–791. [Google Scholar] [CrossRef]
- Sophocleous, M. Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeol. J. 2005, 13, 351–365. [Google Scholar] [CrossRef]
- Dripps, W.R.; Hunt, R.J.; Anderson, M.P. Estimating recharge rates with analytic element models and parameter estimation. Ground Water 2006, 44, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Berndtsson, R.; Kompani-Zare, M.; Persson, M. Natural vs. artificial groundwater recharge, quantification through inverse modeling. Hydrol. Earth Syst. Sci. 2013, 17, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Moiwo, J.P.; Tao, F. Groundwater recharge and discharge analysis for Land use conditions suitable for the hydrology and ecology of semiarid regions. Hydrol. Res. 2014, 45, 563–574. [Google Scholar] [CrossRef]
- Yifru, B.A.; Chung, I.M.; Kim, M.G.; Chang, S.W. Assessment of groundwater recharge in agro-urban watersheds using integrated SWAT-MODFLOW model. Sustainability 2020, 12, 6593. [Google Scholar] [CrossRef]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Misstear, B.D.R.; Brown, L.; Johnston, P.M. Estimation of groundwater recharge in a major sand and gravel aquifer in Ireland using multiple approaches. Hydrogeol. J. 2009, 17, 693–706. [Google Scholar] [CrossRef]
- Heppner, C.S.; Nimmo, J.R.; Folmar, G.J.; Gburek, W.J.; Risser, D.W. Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA. Hydrogeol. J. 2007, 15, 915–927. [Google Scholar] [CrossRef]
- Misstear, B.D.R. Groundwater Recharge Assessment: A Key Component of River Basin Management. Natl. Hydrol. Semin. 2000, 51–58. [Google Scholar]
- Lerner, D.N. Identifying and quantifying urban recharge: A review. Hydrogeol. J. 2002, 10, 143–152. [Google Scholar] [CrossRef]
- Xu, Y.; Beekman, H.E. Groundwater Recharge Estimation in Southern Africa; UNESCO: Paris, France, 2003; Volume 64, ISBN 9292200003. [Google Scholar]
- Wright, S.N.; Novakowski, K.S. Groundwater recharge, flow and stable isotope attenuation in sedimentary and crystalline fractured rocks: Spatiotemporal monitoring from multi-level wells. J. Hydrol. 2019, 571, 178–192. [Google Scholar] [CrossRef]
- Koussoubé, Y. Hydrogéologie en Milieu de Socle Cristallin du Burkina Faso. Cas du Bassin Versant du Bas-Fond de Bidi (Province du Yatenga). Ph.D. Thesis, Université Cheikh Anta Diop de Dakar, Dakar, Senegal, 1996. [Google Scholar]
- Sandwidi, W.J.P. Groundwater Potential to Supply Population Demand within the Kompienga dam Basin in Burkina Faso. Ph.D. Thesis, Universitäts und Landesbibliothek Bonn, Bonn, Germany, 2007; p. 132. [Google Scholar]
- Soro, D.D. Caractérisation et Modélisation Hydrogéologique d’un Aquifère en Milieu de Socle Fracturé: Cas du Site Expérimental de Sanon (Région du Plateau Central au Burkina Faso). Ph.D. Thesis, International Institute of Water and Environmental Engineering, Pierre and Marie Curie-Paris VI University, Paris, France, 2017. [Google Scholar]
- Robins, N.S. Recharge: The key to groundwater pollution and aquifer vulnerability. Geol. Soc. Spec. Publ. 1998, 130, 1–5. [Google Scholar] [CrossRef]
- Zongyu, C.; Zhenlong, N.; Zhaoji, Z.; Jixiang, Q.; Yunju, N. Isotopes and Sustainability of Ground Water. Ground Water 2005, 43, 485–493. [Google Scholar] [CrossRef]
- Demlie, M.; Wohnlich, S.; Ayenew, T. Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia. J. Hydrol. 2008, 353, 175–188. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Z.; Edmunds, W.M.; Gates, J.B.; Huang, T. Limits to recharge of groundwater from Tibetan plateau to the Gobi desert, implications for water management in the mountain front. J. Hydrol. 2009, 364, 128–141. [Google Scholar] [CrossRef]
- Saha, D.; Dwivedi, S.N.; Roy, G.K.; Reddy, D.V. Investigation sur le flux de nappe et sur le mécanisme de recharge d’un système aquifère du socle basée sur les isotopes: Cas de la zone urbaine de Ranchi, Inde. Hydrogeol. J. 2013, 21, 1101–1115. [Google Scholar] [CrossRef]
- Kamtchueng, B.T.; Fantong, W.Y.; Wirmvem, M.J.; Tiodjio, R.E.; Fouépé Takounjou, A.; Asai, K.; Bopda Djomou, S.L.; Kusakabe, M.; Ohba, T.; Tanyileke, G.; et al. A multi-tracer approach for assessing the origin, apparent age and recharge mechanism of shallow groundwater in the Lake Nyos catchment, Northwest, Cameroon. J. Hydrol. 2015, 523, 790–803. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, F.; Chen, Z. Characterization of recharge processes and groundwater flow paths using isotopes in the arid Santanghu basin, Northwest China. Hydrogeol. J. 2020, 28, 1037–1051. [Google Scholar] [CrossRef]
- Leduc, C.; Taupin, J.; Le Gal, C. Estimation de la recharge de la nappe phréatique du Continental Terminal (Niamey, Niger). Géosci.Surf. 1996, 323, 599–605. [Google Scholar]
- Desconnets, J.C.; Taupin, J.D.; Lebel, T.; Leduc, C. Hydrology of the HAPEX-Sahel Central Super-Site: Surface water drainage and aquifer recharge through the pool systems. J. Hydrol. 1997, 188–189, 155–178. [Google Scholar] [CrossRef]
- Abdou Babaye, M.S.; Orban, P.; Ousmane, B.; Favreau, G.; Brouyère, S.; Dassargues, A. Characterization of recharge mechanisms in a Precambrian basement aquifer in semi-arid south-west Niger. Hydrogeol. J. 2019, 27, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Compaore, G. Évaluation de la Fonction Capacitive des Altérites, Site Expérimental de Sanon: Socle Granito-Gneissique Sous Climat de Type Soudano-Sahélien. Ph.D. Thesis, Université d’Avignon, Avignon, France, 1997. [Google Scholar]
- BUNASOLS. Rapport d’Inspection Morphopédologique et Résultats d’Analyses Granulométriques des Prélèvements des sols du Site Expérimental de Sanon; BUNASOLS: Ouagadougou, Burkina Faso, 2020. [Google Scholar]
- BRGM-Aquater. Exploitation des Eaux Souterraines en Socle Cristallin et Valorisation Agricole: Pilote Expérimental en Milieu Rural Pour les Zones Soudano-Sahéliennes et Sahéliennes; Rapport 33576; BRGM (Bureau de Recherches Géologiques et Minières): Orléans, France, 1991. [Google Scholar]
- IGB. Base de Données d’Occupation des Terres (BDOT) 2012; IGB: Ouagadougou, Burkina Faso, 2012. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Lompo, M. Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key structures for vertical to transcurrent tectonics. J. Afr. Earth Sci. 2010, 58, 19–36. [Google Scholar] [CrossRef]
- Feybesse, J.-L.; Billa, M.; Guerrot, C.; Duguey, E.; Lescuyer, J.-L.; Milesi, J.-P.; Bouchot, V. The paleoproterozoic Ghanaian province: Geodynamic model and ore controls, including regional stress modeling. Precambrian Res. 2006, 149, 149–196. [Google Scholar] [CrossRef]
- Castaing, C.; Chevremont, P.; Donzeau, M.; Egal, E.; Le Mentour, J.; Thiéblemont, D.T.M.; Guerrot, C.; Billa, M.; Itard, Y.; Delpont, G.K.J. Notice Explicative de la Carte Géologique et Minière du Burkina Faso à 1/1,000,000; Bureau de Recherches Géologiques et Minières: Orléans, France, 2003. [Google Scholar]
- Soro, D.D.; Koïta, M.; Biaou, C.A.; Outoumbe, E.; Vouillamoz, J.M.; Yacouba, H.; Guérin, R. Geophysical demonstration of the absence of correlation between lineaments and hydrogeologically usefull fractures: Case study of the Sanon hard rock aquifer (central northern Burkina Faso). J. Afr. Earth Sci. 2017, 129, 842–852. [Google Scholar] [CrossRef] [Green Version]
- Koïta, M.; Yonli, H.F.; Soro, D.D.; Dara, A.E.; Vouillamoz, J.M. Groundwater storage change estimation using combination of hydrogeophysical and groundwater table fluctuation methods in hard rock aquifers. Resources 2018, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Boivin, P. Caracterisation de l’infiltrabilité d’un sol par la méthode MUNTZ, Variabilite de la mesure. Bull. Eros. 1990, 10, 14–24. [Google Scholar]
- Peugeot, C. Influence de L’encroutement Superficiel du sol sur le Fonctionnement Hydrologique d’un Versant Sahelien (Niger). Experimentations in Situ et Modelisation. Ph.D. Thesis, Université Joseph Fourier, Grenoble, France, 1995. [Google Scholar]
- Zouré, C.O. Étude des Performances Hydrologiques des Techniques Culturales dans un Contexte de Changement Climatique en Zone Sahélienne du Burkina. Ph.D. Thesis, Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Ouagadougou, Burkina Faso, 2019. [Google Scholar]
- Simler, R. DIAGRAMMES: Manuel d’Utilisation; Laboratoire d’Hydrogéologie d’Avignon: Avignon, France, 2014. [Google Scholar]
- Ouandaogo-Yameogo, S. Ressources en eau Souterraine du Centre Urbain de Ouagadougou au Burkina Faso, Qualité et Vulnérabilité. Ph.D. Thesis, Université d’Avignon et des Pays de Vaucluse, Avignon, France, 2008. [Google Scholar]
- Müller, D.; Blum, A.; Hart, A.; Hookey, J.; Kunkel, R.; Scheidleder, A.; Tomlin, C.; Wendland, F. Final Proposal for a Methodology to Set up Groundwater Threshold Values in Europe. BRIDGE Deliverable D18. 2006. 63p. Available online: http://nfp-at.eionet.europa.eu/Public/irc/eionet-circle/bridge/library?l=/deliverables/bridge_groundw-205pdf/_EN_1.0_&a=d (accessed on 15 March 2021).
- Thomas, C.; Orban, P.; Brouyère, S. Caractérisation de la Concentration de Référence de Certains Paramètres Chimiques Présents Naturellement da ns les Masses d’ eau Souterraine Captives du Socle et du Crétacé ( BR01 ) et du Landénien ( BR03 ) en Région de Bruxelles-Capitale; Bruxelles Environnement: Brussels, Belgium, 2016. [Google Scholar]
- Koïta, M.; Yonli, H.F.; Soro, D.D.; Dara, A.E.; Vouillamoz, J.M. Taking into account the role of the weathering profile in determining hydrodynamic properties of hard rock aquifers. Geosciences 2017, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Kotchoni, D.O.V. Recharge des Aquifères de Socle du Bénin: Identification des Processus, Quantification et Analyse de L’évolution Temporelle. Ph.D. Thesis, Université d’Abomey Calavi, Abomey-Calavi, Benin, 2019; 126p. [Google Scholar]
- Das, S. Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Model. Earth Syst. Environ. 2017, 3, 1589–1599. [Google Scholar] [CrossRef] [Green Version]
- Stigter, T.Y.; Van Ooijen, S.P.J.; Post, V.E.A.; Appelo, C.A.J.; Carvalho Dill, A.M.M. A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J. Hydrol. 1998, 208, 262–279. [Google Scholar] [CrossRef]
- Capaccioni, B.; Didero, M.; Paletta, C.; Didero, L. Saline intrusion and refreshening in a multilayer coastal aquifer in the Catania Plain (Sicily, Southern Italy): Dynamics of degradation processes according to the hydrochemical characteristics of groundwaters. J. Hydrol. 2005, 307, 1–16. [Google Scholar] [CrossRef]
- Favreau, G.; Leduc, C.; Marlin, C.; Guéro, A. Une dépression piézométrique naturelle en hausse au Sahel (Sud-Ouest du Niger)A rising piezometric depression in the Sahel (southwestern Niger). C. R. Geosci. 2002, 334, 395–401. [Google Scholar] [CrossRef]
- Matsuno, Y.; Nakamura, K.; Masumoto, T.; Matsui, H.; Kato, T.; Sato, Y. Prospects for multifunctionality of paddy rice cultivation in Japan and other countries in monsoon Asia. Paddy Water Environ. 2006, 4, 189–197. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Nakamura, K.; Horino, H.; Kawashima, S. Évaluation des facteurs influençant les variations piézométriques en utilisant des simulations des eaux souterraines considérant l’infiltration verticale à partir de rizières associant riz et céréales en rotation au Japon. Hydrogeol. J. 2014, 22, 1841–1855. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Feng, G.; Li, X.; Xie, C.; Pi, X. Flood effect on groundwater recharge on a typical silt loam soil. Water 2017, 9, 523. [Google Scholar] [CrossRef] [Green Version]
Pair of Observation Wells | Hydraulic Gradient (%) | |
---|---|---|
Low Water | High Water | |
S1–S1CN | −0.07 | 0.70 |
S1–S11 | 0.70 | 1.00 |
S1–SaG | 0.30 | 0.40 |
S1–S19 | 0.30 | 0.40 |
Parameter | Alterites | Fractured Aquifers | All Aquifers |
---|---|---|---|
EC (µS/cm) | 114.20 | 153.89 | 128.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafando, M.B.; Koïta, M.; Le Coz, M.; Yonaba, O.R.; Fowe, T.; Zouré, C.O.; Faye, M.D.; Leye, B. Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso. Water 2021, 13, 3216. https://doi.org/10.3390/w13223216
Kafando MB, Koïta M, Le Coz M, Yonaba OR, Fowe T, Zouré CO, Faye MD, Leye B. Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso. Water. 2021; 13(22):3216. https://doi.org/10.3390/w13223216
Chicago/Turabian StyleKafando, Moussa Bruno, Mahamadou Koïta, Mathieu Le Coz, Ousmane Roland Yonaba, Tazen Fowe, Cheick Oumar Zouré, Moussa Diagne Faye, and Babacar Leye. 2021. "Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso" Water 13, no. 22: 3216. https://doi.org/10.3390/w13223216
APA StyleKafando, M. B., Koïta, M., Le Coz, M., Yonaba, O. R., Fowe, T., Zouré, C. O., Faye, M. D., & Leye, B. (2021). Use of Multidisciplinary Approaches for Groundwater Recharge Mechanism Characterization in Basement Aquifers: Case of Sanon Experimental Catchment in Burkina Faso. Water, 13(22), 3216. https://doi.org/10.3390/w13223216