Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses
Abstract
:1. Introduction
1.1. Overview of Desalination in the World
1.2. Desalination Technology
1.2.1. Thermal Desalination Technology
1.2.2. Membrane Desalination Technology
1.2.3. Hybrid Desalination Technology
2. Materials and Methods
2.1. Life Cycle Analysis (LCA)
2.1.1. Goal and Scope
2.1.2. Inventory Analysis
2.1.3. Life Cycle Impact Assessment (LCIA)
2.2. PESTLE Risk Analysis
2.3. Multi-Criteria Decision Analysis (MCDA)
3. Results and Discussion
3.1. Political and Legal Aspects
3.2. Economic Aspects
3.3. Social Aspects
3.4. Technological Aspects
3.5. Environmental Aspects
3.6. MCDA Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RO | Reverse Osmosis |
MSF | Multi-Stage Flash Distillation |
MED | Multi-Effect Distillation |
TVC | Thermal Vapor Compression |
MF | Microfiltration |
UF | Ultrafiltration |
NF | Nanofiltration |
MB | Membrane Bioreactor |
MD | Membrane Distillation |
ED | Electrodialysis |
FO | Forward Osmosis |
PV | Photovoltaic |
RE | Renewable Energy |
TDS | Total Dissolved Solids |
LCA | Life Cycle Analysis |
LCIA | Life Cycle Impact Assessment |
DALY | Disability-Adjusted Life-Years |
Potentially Disappeared Fraction | |
MCDA | Multi-Criteria Decision Analysis |
TOPSIS | Technique for Order Preference by Similarity to the Ideal Solution |
GWP | Global Warming Potential |
CAPEX | Capital Expenditure |
OPEX | Operational Expenditure |
References
- Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water—A comprehensive review. Resour. Effic. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilion, F. Hybrid renewable energy systems for desalination. Appl. Water Sci. 2020, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Feria-Díaz, J.; Maria Cristina, L.-M.; Sandoval-Herazo, L.; Correa Mahecha, F.; Rodriguez Miranda, J. Commercial Thermal Technologies for Desalination of Water from Renewable Energies: A State of the Art Review. Processes 2020, 9, 262. [Google Scholar] [CrossRef]
- Caldera, U.; Bogdanov, D.; Breyer, C. Local cost of seawater RO desalination based on solar PV and wind energy: A global estimate. Desalination 2016, 385, 207–216. [Google Scholar] [CrossRef]
- Li, C.; Goswami, Y.; Stefanakos, E. Solar assisted sea water desalination: A review. Renew. Sustain. Energy Rev. 2013, 19, 136–163. [Google Scholar] [CrossRef]
- Nair, M.; Kumar, D. Water desalination and challenges: The Middle East perspective: A review. Desalination Water Treat. 2013, 51, 2030–2040. [Google Scholar] [CrossRef]
- Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination 2020, 495, 114633. [Google Scholar] [CrossRef]
- Voutchkov, N. The Role of Desalination in an Increasingly Water-Scarce World; World Bank Group: Washington, DC, USA, 2019. [Google Scholar]
- Jones, E.; Qadir, M.; van Vliet, M.; Smakhtin, V.; Kang, S.-M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef]
- Markets, R.A. Global Desalination Market by Regions, Technology, Application, Company, Analysis, Forecast; Research and Markets: Dublin, Ireland, 2021; p. 100. [Google Scholar]
- Álvarez, V.; Gonzalez-Ortega, M.; Martin-Gorriz, B.; Soto Garcia, M.; Maestre, J. Seawater desalination for crop irrigation-Current status and perspectives. J. Appl. Biomater. Biomech. 2018, 1, 461–492. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Hilal, N. Membrane desalination and water re-use for agriculture: State of the art and future outlook. Desalination 2020, 491, 114559. [Google Scholar] [CrossRef]
- Elsaid, K.; Kamil, M.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A. Environmental impact of desalination technologies: A review. Sci. Total Environ. 2020, 748, 141528. [Google Scholar] [CrossRef]
- Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Ramadan, M.; Olabi, A.G. Environmental impact of emerging desalination technologies: A preliminary evaluation. J. Environ. Chem. Eng. 2020, 8, 104099. [Google Scholar] [CrossRef]
- Ahmadvand, S.; Abbasi, B.; Azarfar, B.; Elhashimi, M.; Zhang, X.; Abbasi, B. Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. Water 2019, 11, 696. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H. A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination 2011, 270, 1–8. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Haralambous, K.-J. Environmental impacts of desalination and brine treatment-Challenges and mitigation measures. Mar. Pollut. Bull. 2020, 161, 111773. [Google Scholar] [CrossRef]
- Cambridge, M.L.; Zavala-Perez, A.; Cawthray, G.R.; Mondon, J.; Kendrick, G.A. Effects of high salinity from desalination brine on growth, photosynthesis, water relations and osmolyte concentrations of seagrass Posidonia australis. Mar. Pollut. Bull. 2017, 115, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Missimer, T.M.; Maliva, R.G. Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls. Desalination 2018, 434, 198–215. [Google Scholar] [CrossRef]
- Li, H.; Shi, A.; Li, M.; Zhang, X. Effect of pH, Temperature, Dissolved Oxygen, and Flow Rate of Overlying Water on Heavy Metals Release from Storm Sewer Sediments. J. Chem. 2013, 2013, 434012. [Google Scholar] [CrossRef]
- Wiltshire, K.H.; Kraberg, A.; Bartsch, I.; Boersma, M.; Franke, H.-D.; Freund, J.; Gebühr, C.; Gerdts, G.; Stockmann, K.; Wichels, A. Helgoland Roads, North Sea: 45 Years of Change. Estuaries Coasts 2010, 33, 295–310. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.E.; Silverman, J.; Galanti, B.; Biton, E. Modelling the distributions of desalination brines from multiple sources along the Mediterranean coast of Israel. Water Res. 2020, 173, 115555. [Google Scholar] [CrossRef]
- Kenigsberg, C.; Abramovich, S.; Hyams-Kaphzan, O. The effect of long-term brine discharge from desalination plants on benthic foraminifera. PLoS ONE 2020, 15, e0227589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, H.; Saadaoui, I.; Moheimani, N.; Al Saidi, M.; Al Jamali, F.; Al Jabri, H.; Hamadou, R.B. Marine health of the Arabian Gulf: Drivers of pollution and assessment approaches focusing on desalination activities. Mar. Pollut. Bull. 2021, 164, 112085. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, A.; Haralambous, K.-J.; Loizidou, M. Desalination brine disposal methods and treatment technologies—A review. Sci. Total Environ. 2019, 693, 133545. [Google Scholar] [CrossRef]
- Alshahri, F. Heavy metal contamination in sand and sediments near to disposal site of reject brine from desalination plant, Arabian Gulf: Assessment of environmental pollution. Environ. Sci. Pollut. Res. 2017, 24, 1821–1831. [Google Scholar] [CrossRef]
- Mohamed, A.M.O.; Maraqa, M.; Al Handhaly, J. Impact of land disposal of reject brine from desalination plants on soil and groundwater. Desalination 2005, 182, 411–433. [Google Scholar] [CrossRef]
- Ahlgren, J.; Grimvall, A.; Omstedt, A.; Rolff, C.; Wikner, J. Temperature, DOC level and basin interactions explain the declining oxygen concentrations in the Bothnian Sea. J. Mar. Syst. 2017, 170, 22–30. [Google Scholar] [CrossRef]
- Guo, P.; Li, T.; Wang, Y.; Li, J. Energy and exergy analysis of a spray-evaporation multi-effect distillation desalination system. Desalination 2021, 500, 114890. [Google Scholar] [CrossRef]
- Voutchkov, N. Energy use for membrane seawater desalination–current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Woo, Y.C.; Kim, S.-H.; Shon, H.K.; Tijing, L.D. Introduction: Membrane Desalination Today, Past, and Future. In Current Trends and Future Developments on (Bio-) Membranes; Basile, A., Curcio, E., Inamuddin, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. xxv–xlvi. [Google Scholar] [CrossRef]
- Kress, N. Chapter 2-Desalination Technologies. In Marine Impacts of Seawater Desalination; Kress, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 11–34. [Google Scholar] [CrossRef]
- Saadat, A.H.M.; Islam, M.S.; Islam, M.; Fahmida, P.; Sultana, A. Desalination Technologies for Developing Countries: A Review. J. Sci. Res. 2018, 10, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Likhachev, D.; Li, F.-C. Large-scale water desalination methods: A review and new perspectives. Desalination Water Treat. 2013, 51, 2836–2849. [Google Scholar] [CrossRef]
- Toth, A.J. Modelling and Optimisation of Multi-Stage Flash Distillation and Reverse Osmosis for Desalination of Saline Process Wastewater Sources. Membranes 2020, 10, 265. [Google Scholar] [CrossRef]
- Anand, B.; Shankar, R.; Murugavelh, S.; Rivera, W.; Midhun Prasad, K.; Nagarajan, R. A review on solar photovoltaic thermal integrated desalination technologies. Renew. Sustain. Energy Rev. 2021, 141, 110787. [Google Scholar] [CrossRef]
- Maton, L.; Psarras, G.; Kasapakis, G.; Ravn Lorenzen, J.; Andersen, M.; Boesen, M.; Nøhr Bak, S.; Chartzoulakis, K.; Marcus Pedersen, S.; Kloppmann, W. Assessing the net benefits of using wastewater treated with a membrane bioreactor for irrigating vegetables in Crete. Agric. Water Manag. 2010, 98, 458–464. [Google Scholar] [CrossRef]
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Shady, A. Recycling of polluted wastewater for agriculture purpose using electrodialysis: Perspective for large scale application. Chem. Eng. J. 2017, 323, 1–18. [Google Scholar] [CrossRef]
- Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination 2018, 434, 121–160. [Google Scholar] [CrossRef]
- Voutchkov, N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010, 261, 354–364. [Google Scholar] [CrossRef]
- Wafi, M.K.; Hussain, N.; El-Sharief Abdalla, O.; Al-Far, M.D.; Al-Hajaj, N.A.; Alzonnikah, K.F. Nanofiltration as a cost-saving desalination process. SN Appl. Sci. 2019, 1, 751. [Google Scholar] [CrossRef] [Green Version]
- Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Res. 2009, 43, 2317–2348. [Google Scholar] [CrossRef] [PubMed]
- Sablani, S.S.; Goosen, M.F.A.; Al-Belushi, R.; Wilf, M. Concentration polarization in ultrafiltration and reverse osmosis: A critical review. Desalination 2001, 141, 269–289. [Google Scholar] [CrossRef]
- Curto, D.; Franzitta, V.; Guercio, A. A Review of the Water Desalination Technologies. Appl. Sci. 2021, 11, 670. [Google Scholar] [CrossRef]
- Mansour, T.M.; Ismail, T.M.; Ramzy, K.; Abd El-Salam, M. Energy recovery system in small reverse osmosis desalination plant: Experimental and theoretical investigations. Alex. Eng. J. 2020, 59, 3741–3753. [Google Scholar] [CrossRef]
- Miller, S.; Shemer, H.; Semiat, R. Energy and environmental issues in desalination. Desalination 2015, 366, 2–8. [Google Scholar] [CrossRef]
- Washahi, M.A.; Gopinath, A.S. Techno Economical Feasibility Analysis of Solar Powered RO Desalination in Sultanate of Oman. In Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahrain, 8–11 May 2017; pp. 1–9. [Google Scholar]
- Cherif, H.; Belhadj, J. Chapter 15-Environmental Life Cycle Analysis of Water Desalination Processes. In Sustainable Desalination Handbook; Gude, V.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 527–559. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; El Haj Assad, M.; Sayed, E.T.; Soudan, B. Recent progress in the use of renewable energy sources to power water desalination plants. Desalination 2018, 435, 97–113. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Al Bloushi, A.; Giwa, A.; Mezher, T.; Hasan, S.W. Chapter 3-Environmental Impact and Technoeconomic Analysis of Hybrid MSF/RO Desalination: The Case Study of Al Taweelah A2 Plant. In Sustainable Desalination Handbook; Gude, V.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 55–97. [Google Scholar] [CrossRef]
- Hamed, O.A. Overview of hybrid desalination systems—Current status and future prospects. Desalination 2005, 186, 207–214. [Google Scholar] [CrossRef]
- Kamal, I. Myth and reality of the hybrid desalination process. Desalination 2008, 230, 269–280. [Google Scholar] [CrossRef]
- Chauhan, V.K.; Shukla, S.K.; Tirkey, J.V.; Singh Rathore, P.K. A comprehensive review of direct solar desalination techniques and its advancements. J. Clean. Prod. 2021, 284, 124719. [Google Scholar] [CrossRef]
- Aziz, N.I.H.A.; Hanafiah, M.M. Application of life cycle assessment for desalination: Progress, challenges and future directions. Environ. Pollut. 2021, 268, 115948. [Google Scholar] [CrossRef] [PubMed]
- Team, A.-C. Concentrating Solar Power for Seawater Desalination; Federal Ministry for the Environment, Nature Conservation and Nuclear Safety: Stuttgart, Germany, 2007.
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef] [Green Version]
- WHO. Indicator Metadata Registry List. Available online: www.who.int/data/gho/indicator-metadata-registry (accessed on 10 August 2021).
- Benini, L.; Mancini, L.; Sala, S.; Manfredi, S.; Schau, E.; Pant, R. Normalisation Method and Data for Environmental Footprints; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Huijbregts, M.; Steinmann, Z.; Elshout, P.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2016, 22, 138–147. [Google Scholar] [CrossRef]
- Catalán, E.; Sánchez, A. Solid-State Fermentation (SSF) Versus Submerged Fermentation (SmF) for the Recovery of Cellulases from Coffee Husks: A Life Cycle Assessment (LCA) Based Comparison. Energies 2020, 13, 2685. [Google Scholar] [CrossRef]
- Hischier, R.; Weidema, B.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; et al. Implementation of Life Cycle Impact Assessment Methods; Swiss Centre for Life Cycle Inventories: St. Gallen, Switzerland, 2010. [Google Scholar]
- Nitank Rastogi, D.M.K.T. PESTLE Technique—A tool to identify external risks in construction projects. Int. Res. J. Eng. Technol. (IRJET) 2016, 3, 384–388. [Google Scholar]
- Rustum, R.; Kurichiyanil, A.M.; Forrest, S.; Sommariva, C.; Adeloye, A.J.; Zounemat-Kermani, M.; Scholz, M. Sustainability Ranking of Desalination Plants Using Mamdani Fuzzy Logic Inference Systems. Sustainability 2020, 12, 631. [Google Scholar] [CrossRef] [Green Version]
- March, H. The politics, geography, and economics of desalination: A critical review: Politics, geography, and economics of desalination. WIREs Water 2015, 2, 231–243. [Google Scholar] [CrossRef]
- Roszkowska, E. Multi-criteria Decision Making Models by Applying the Topsis Method to Crisp and Interval Data. Mult. Criteria Decis. Mak. 2011, 6, 200–230. [Google Scholar]
- Balioti, V.; Tzimopoulos, C.; Evangelides, C. Multi-Criteria Decision Making Using TOPSIS Method Under Fuzzy Environment. Application in Spillway Selection. Proceedings 2018, 2, 637. [Google Scholar] [CrossRef] [Green Version]
- United Arab Emirates Ministry of Emergy and Infrastructure. Available online: https://www.moei.gov.ae/default.aspx (accessed on 3 May 2021).
- Navarro, T. Water reuse and desalination in Spain–challenges and opportunities. J. Water Reuse Desalination 2018, 8, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Arahuetes, A.; Villar Navascués, R. Desalination, a strategic and controversial resource in Spain. WIT Trans. Ecol. Environ. 2017, 216, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaei, M.; Hosseinzadeh-Bandbafha, H.; Yang, Y.; Aghbashlo, M.; Lam, S.S.; Montgomery, H.; Peng, W. Exergy intensity and environmental consequences of the medical face masks curtailing the COVID-19 pandemic: Malign bodyguard? J. Clean. Prod. 2021, 313, 127880. [Google Scholar] [CrossRef] [PubMed]
- Homaeigohar, S.; Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater. 2017, 9, e427. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Burger, C.; Hsiao, B.; Chu, B. Ultra-fine cellulose nanofibers: New nano-scale materials for water purification. J. Mater. Chem. 2011, 21, 7507–7510. [Google Scholar] [CrossRef]
- Liu, S.; Low, Z.-X.; Hegab, H.M.; Xie, Z.; Ou, R.; Yang, G.; Simon, G.P.; Zhang, X.; Zhang, L.; Wang, H. Enhancement of desalination performance of thin-film nanocomposite membrane by cellulose nanofibers. J. Membr. Sci. 2019, 592, 117363. [Google Scholar] [CrossRef]
- Smith, E.; Hendren, K.; Haag, J.; Foster, E.J.; Martin, S. Functionalized Cellulose Nanocrystal Nanocomposite Membranes with Controlled Interfacial Transport for Improved Reverse Osmosis Performance. Nanomaterials 2019, 9, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pervov, A.; Andrianov, A.; Rudakova, G.; Popov, K. A comparative study of some novel “green” and traditional antiscalants efficiency for the reverse osmotic Black Sea water desalination. Desalination Water Treat. 2017, 73, 11–21. [Google Scholar] [CrossRef] [Green Version]
Water Supply Alternative | Energy (kWh/m3) |
---|---|
Conventional treatment of surface water | 0.20–0.40 |
Groundwater | 0.48 |
Wastewater treatment | 0.62–0.87 |
Wastewater reuse | 1.00–2.50 |
Brackish water desalination | 1.00–1.50 |
Seawater desalination | 2.58–8.50 |
Classification | Thermal | Membrane |
---|---|---|
Desalination technologies | MED, MSF, MVC, TVC | MF, UF, NF, MB, MD, ED, RO |
Separation mechanism | Phase change | Diffusion |
Main type of energy requirements | Thermal | Electricity |
Driving force | Heat | Pressure/Electricity |
Specific energy consumption | High | Low |
Thermal Technology | Membrane Technology | |||||
---|---|---|---|---|---|---|
MSF | MED | MVC | TVC | ED | RO | |
Water type | Seawater, Brackish | Seawater, Brackish | Seawater, Brackish | Seawater, Brackish | Brackish | Seawater, Brackish |
Operation temperature (°C) | 90–110 | 70 | 70–100 | 63–70 | Ambient | Ambient |
Typical unit size (m3/day) | 50,000–70,000 | 5000–15,000 | 100–3000 | 10,000–30,000 | 2–145,000 | 24,000 |
Electrical energy consumption (kWh/m3) | 4–6 | 1.5–2.5 | 7–12 | 1.8–1.6 | 2.6–5.5 | 5–9 |
Thermal energy consumption (KJ/kg) | 190–390 | 230–390 | none | 145–390 | none | none |
Electrical equivalent for thermal energy (kWh/m3) | 9.5–19.5 | 5–8.5 | none | 9.5–25.5 | none | none |
Total electric equivalent (kWh/m3) | 13.5–25.5 | 6.5–11 | 7–12 | 11–28 | 2.6–5.5 | 5–9 |
Maximum value of CO2 emissions (kg CO2/m3) | 24 | 19.2 | 11.5 | 21 | 5.3 | 8.6 |
Distillate quality—TDS (ppm) | ~10 | ~10 | ~10 | ~10 | 150–500 | <500 |
Unit product cost (USD/m3) | 0.52–1.75 | 0.52–1.01 | 2–2.6 | 0.827 | 0.6–1.05 | 0.52–0.56 |
RE Desalination Process | Typical Capacity (m3/day) | Energy Demand (kWhe/m3) | Water Production Cost (USD/m3) |
---|---|---|---|
Solar still | <100 | Solar passive | 1.3–6.5 |
Solar MEH | 1–100 | Thermal 29.6 Electrical 1.5 | 2.6–6.5 |
Solar MD | 0.15–10 | 45–59 | 10.5–19.5 |
Solar pond/MED | 20,000–200,000 | Thermal 12.4–24.1 Electrical 2–3 | 0.71–0.89 |
Solar pond/RO | 20,000–200,000 | Seawater 4–6 Brackish water 1.5–4 | 0.66–0.77 |
Solar CSP/MED | >5000 | Thermal 12.4–24.1 Electrical 2–3 | 2.4–2.8 |
Solar PV/RO | <100 | Seawater 4–6 Brackish water 1.5–4 | 11.7–15.6 6.5–9.1 |
Solar PV/EDR | <100 | 1.5–4 | 10.4–11.7 |
Wind/RO | 50–2000 | Seawater 4–6 Brackish water 1.5–4 | 6.6–9 small capacity 1.95–5.2 for 1000 m3/d |
Wind/MVC | <100 | 7–12 | 5.2–7.8 |
Geothermal/MED | 80 | Thermal 12.4–24.1 Electrical 2–3 | 2–2.8 |
MSF | MED | RO | Unit | |||
---|---|---|---|---|---|---|
Input | Seawater | 10 | 9 | 3 | m3 | |
Heat Energy | 290 | 267.5 | - | MJ | ||
Electric Energy | 4 | 2 | 4 | kWh | ||
Disinfectant | Chlorine | 20.5 | 18.5 | 3.5 | g | |
Antiscalant | Phosphoric acid | - | 27 | 6 | g | |
Sulfuric acid | 20 | - | 195 | g | ||
Chlorine removal | Sodium bisulfite | - | 18 | 9 | g | |
Antifoam | Propylene glycol | 1 | 0.9 | - | g | |
Coagulant | Aluminum chloride | - | - | 6.75 | g | |
Ferric chloride | - | - | 53.7 | g | ||
Flocculant | Polyacrylamide | - | - | 6.3 | g | |
Mineral supplementation | Calcium hydroxide | 0.5 | 0.5 | 0.5 | g | |
Output | Chlorine | 0.7 | 0.7 | 0.7 | g | |
Phosphoric acid | - | 10 | - | g | ||
Sulfuric acid | 8 | - | 6 | g | ||
Copper (from corrosion of structural materials) | 0.03 | 20 | - | mg | ||
Propylene glycol | 0.09 | 0.09 | - | g | ||
Sodium chloride | 45 | 45 | 45 | kg | ||
Waste heat | 73.44 | 114.24 | - | MJ |
Damage Categories | Normalization Factors | Unit |
---|---|---|
Human health | 0.0077 | DALY/person/year |
Ecosystem quality | 4650 | PDF*m2*year/person/year |
Climate change | 9950 | kg CO2/person/year |
Resources | 152,000 | MJ/person/year |
Method | RO | MSF | MED | Unit |
---|---|---|---|---|
IMPACT 2002+ | 2.98 × 10−6 | 1.43 × 10−5 | 9.86 × 10−6 | DALY |
ReCiPe 2016 | 9.05 × 10−6 | 3.89 × 10−5 | 3.35 × 10−5 | DALY |
Basic Case | Natural Gas | Nuclear Energy | Solar Energy | Wind Energy, Onshore | Wind Energy, Offshore | Unit | |
---|---|---|---|---|---|---|---|
MSF | 3.87 × 10−5 | 2.00 × 10−5 | 1.10 × 10−6 | 9.89 × 10−7 | 1.10 × 10−7 | 1.23 × 10−7 | DALY |
MED | 3.24 × 10−5 | 1.51 × 10−5 | 1.09 × 10−6 | 1.05 × 10−6 | 2.46 × 10−7 | 2.35 × 10−7 | DALY |
RO | 8.66 × 10−6 | 0 | 6.82 × 10−7 | 5.58 × 10−7 | 5.59 × 10−7 | 5.59 × 10−7 | DALY |
Basic Case | Natural Gas | Nuclear Energy | Solar Energy | Wind Energy, Onshore | Wind Energy, Offshore | Unit | |
---|---|---|---|---|---|---|---|
MSF | 1.13 × 10−5 | 4.80 × 10−6 | 6.62 × 10−7 | 5.03 × 10−7 | 5.01 × 10−8 | 5.26 × 10−8 | DALY |
MED | 9.94 × 10−6 | 3.38 × 10−6 | 6.41 × 10−7 | 5.26 × 10−7 | 1.11 × 10−7 | 1.08 × 10−7 | DALY |
RO | 2.86 × 10−6 | 0 | 3.21 × 10−7 | 2.44 × 10−7 | 2.45 × 10−7 | 2.44 × 10−7 | DALY |
Method | Damage/Impact Category | Unit | RO | MSF | MED |
---|---|---|---|---|---|
IMPACT 2002+ | Ecosystem quality | PDF*m2*yr 1 | 0.228 | 0.816 | 0.706 |
Climate change | kg CO2 eq | 4.174 | 16.123 | 13.196 | |
Resources | MJ primary | 67.289 | 228.518 | 184.145 | |
ReCiPe 2016 | Ecosystems | Species*yr | 1.88 × 10−8 | 8.77 × 10−8 | 7.37 × 10−8 |
Resources | USD2013 | 0.610 | 2.204 | 1.788 | |
IPCC 2013 | IPCC GWP 100a | kg CO2 eq | 4.279 | 16.371 | 13.387 |
Method | Damage Category | Unit | Basic Case | Nuclear Energy | Solar Energy | Wind Energy, Onshore | Wind Energy, Offshore |
---|---|---|---|---|---|---|---|
IMPACT 2002+ | Ecosystem quality | PDF*m2*yr 1 | 0.228 | 0.072 | 0.063 | 0.063 | 0.063 |
Climate change | kg CO2 eq | 4.174 | 0.172 | 0.137 | 0.138 | 0.138 | |
Resources | MJ primary | 67.289 | 56.394 | 2.952 | 2.967 | 2.962 | |
ReCiPe 2016 | Ecosystems | Species*yr | 1.88 × 10−8 | 1.31 × 10−9 | 9.96 × 10−10 | 9.99 × 10−10 | 9.98 × 10−10 |
Resources | USD2013 | 0.610 | 0.022 | 0.019 | 0.019 | 0.019 | |
IPCC 2013 | IPCC GWP 100a | kg CO2 eq | 4.279 | 0.185 | 0.149 | 0.149 | 0.149 |
Method | Damage Category | Unit | Basic Case | Natural Gas | Nuclear Energy | Solar Energy | Wind Energy, Onshore | Wind Energy, Offshore |
---|---|---|---|---|---|---|---|---|
IMPACT 2002+ | Ecosystem quality | PDF*m2*yr 1 | 0.816 | 0.236 | 0.195 | 0.022 | 0.004 | 0.004 |
Climate change | kg CO2 eq | 16.123 | 13.778 | 0.767 | 0.379 | 0.035 | 0.045 | |
Resources | MJ primary | 228.518 | 248.792 | 1129.494 | 5.472 | 0.742 | 0.858 | |
ReCiPe 2016 | Ecosystems | Species*yr | 8.77 × 10−8 | 5.12 × 10−8 | 6.86 × 10−9 | 1.70 × 10−9 | 2.04 × 10−10 | 2.37 × 10−10 |
Resources | USD2013 | 2.204 | 2.035 | 0.064 | 0.018 | 0.005 | 0.006 | |
IPCC 2013 | IPCC GWP 100a | kg CO2 eq | 16.371 | 14.614 | 0.801 | 0.409 | 0.038 | 0.048 |
Method | Damage Category | Unit | Basic Case | Natural Gas | Nuclear Energy | Solar Energy | Wind Energy, Onshore | Wind Energy, Offshore |
---|---|---|---|---|---|---|---|---|
IMPACT 2002+ | Ecosystem quality | PDF*m2*yr 1 | 0.706 | 0.171 | 0.199 | 0.042 | 0.026 | 0.026 |
Climate change | kg CO2 eq | 13.196 | 11.034 | 0.722 | 0.379 | 0.071 | 0.062 | |
Resources | MJ primary | 184.145 | 202.847 | 1020.431 | 5.581 | 1.319 | 1.214 | |
ReCiPe 2016 | Ecosystems | Species*yr | 7.37 × 10−8 | 4.00 × 10−8 | 6.51 × 10−9 | 1.87 × 10−9 | 5.23 × 10−10 | 4.92 × 10−10 |
Resources | USD2013 | 1.788 | 1.632 | 0.062 | 0.021 | 0.009 | 0.008 | |
IPCC 2013 | IPCC GWP 100a | kg CO2 eq | 13.387 | 11.767 | 0.755 | 0.408 | 0.075 | 0.066 |
Damage Category | Unit | RO | MSF | MED |
---|---|---|---|---|
Human health | mPt | 0.403 | 1.600 | 1.330 |
Ecosystem quality | mPt | 0.017 | 0.060 | 0.052 |
Climate change | mPt | 0.422 | 1.630 | 1.330 |
Resources | mPt | 0.443 | 1.500 | 1.210 |
Total | mPt | 1.280 | 4.790 | 3.920 |
PESTLE Category | RO | MSF | MED |
---|---|---|---|
Political and legal | 7 | 7 | 7 |
Technological | 9 | 7 | 7 |
Economic | 9 | 5 | 7 |
Political and Legal | Social | Technological | Economic | Environmental | |
---|---|---|---|---|---|
Scale | VVL-VL | MH | VVL-VL | L | H |
Weight | 0.0625 | 0.325 | 0.0625 | 0.175 | 0.375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do Thi, H.T.; Pasztor, T.; Fozer, D.; Manenti, F.; Toth, A.J. Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses. Water 2021, 13, 3023. https://doi.org/10.3390/w13213023
Do Thi HT, Pasztor T, Fozer D, Manenti F, Toth AJ. Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses. Water. 2021; 13(21):3023. https://doi.org/10.3390/w13213023
Chicago/Turabian StyleDo Thi, Huyen Trang, Tibor Pasztor, Daniel Fozer, Flavio Manenti, and Andras Jozsef Toth. 2021. "Comparison of Desalination Technologies Using Renewable Energy Sources with Life Cycle, PESTLE, and Multi-Criteria Decision Analyses" Water 13, no. 21: 3023. https://doi.org/10.3390/w13213023