A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation
Abstract
1. Introduction
2. Governing Equations and Schemes
2.1. Governing Equations
2.2. Finite Volume Method
2.3. HLLC Riemann Solver for Fluxes Prediction
2.4. Slope Limiter
2.5. MUSCL-Hancock Method
2.6. Stability Criteria
3. Intercell Bed Elevation and Dry Cell
4. Results and Discussion
4.1. Steady Condition Calculation of Flood
4.2. Two-Dimensional Smooth River Bed Test
4.3. Dam Breach over a Thump
4.4. Dam Break Wave Propagating over Three Humps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capps, D.M.; Clague, J.J. Evolution of glacier-dammed lakes through space and time; Brady Glacier, Alaska, USA. Geomorphology 2014, 210, 59–70. [Google Scholar] [CrossRef]
- Cook, S.J.; Kougkoulos, I.; Edwards, L.A.; Dortch, J.M.; Hoffmann, D. Glacier change and glacial lake outburst flood risk in the Bolivian Andes. Cryosphere 2016, 10, 2399–2413. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, L.; Xiao, T.; He, J. Barrier lake bursting and flood routing in the Yarlung Tsangpo Grand Canyon in October 2018. J. Hydrol. 2020, 583. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0022169420300639 (accessed on 16 January 2021). [CrossRef]
- Hu, K.; Zhang, X.; You, Y.; Hu, X.; Liu, W.; Li, Y. Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge. Landslides 2019, 16, 993–1001. [Google Scholar] [CrossRef]
- Wei, R.; Zeng, Q.; Davies, T.; Yuan, G.; Wang, K.; Xue, X.; Yin, Q. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring. Eng. Geol. 2018, 233, 172–182. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Alonsorodriguez, A.; Subramanian, S.S.; Li, W.; Zheng, G.; Dong, X.; Huang, R. Successive landsliding and damming of the Jinsha River in eastern Tibet, China: Prime investigation, early warning, and emergency response. Landslides 2019, 16, 1003–1020. [Google Scholar] [CrossRef]
- Li, B.; Feng, Z.; Wang, G.; Wang, W. Processes and behaviors of block topple avalanches resulting from carbonate slope failures due to underground mining. Environ. Earth. Sci. 2016, 75, 694. [Google Scholar] [CrossRef]
- Liu, W.; Carling, P.A.; Hu, K.; Wang, H.; Zhou, Z.; Zhou, L.; Liu, D.; Lai, Z.; Zhang, X. Outburst floods in China: A review. Earth Sci. Rev. 2019, 197, 102895. [Google Scholar] [CrossRef]
- Cui, P.; Dang, C.; Zhuang, J.Q.; You, Y.; Chen, X.Q.; Scott, K.M. Landslide-dammed lake at Tangjiashan, Sichuan province, China (triggered by the Wenchuan Earthquake, May 12, 2008): Risk assessment, mitigation strategy, and lessons learned. Environ. Earth. Sci. 2012, 65, 1055–1065. [Google Scholar] [CrossRef]
- Wang, G.Q.; Fan, L. Simulation of dam breach development for emergency treatment of the Tangjiashan Quake Lake in China. Sci. China Ser. E Technol. Sci. 2008, 51, 82–94. [Google Scholar] [CrossRef]
- Yan, Y.; Cui, Y.F.; Xin, T.; Hu, S.; Guo, J.; Wang, Z.; Yin, S.Y.; Liao, L.F. Seismic Signal Recognition and Interpretation of the 2019 “7.23” Shuicheng Landslide by Seismogram Stations. Landslides 2020, 17, 1206–1911. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, T.; He, J.; Chen, C. Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018. Landslides 2019, 16, 1965–1979. [Google Scholar] [CrossRef]
- Costa, J.E.; Schuster, R.L. The formation and failure of natural dams. Geol. Soc. Am. Bull. 1988, 100, 1054–1068. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, P.; Hao, M. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides 2016, 13, 39–54. [Google Scholar] [CrossRef]
- Ma, D.T. Study on Influences of Mountain Hazards in Yigong Zangbu River Basin to Mitigation and Reconstruction of Sichuan-Tibetan Highway Line. Ph.D. Thesis, The Graduate School of Chinese Academy of Sciences, Beijing, China, 2006. [Google Scholar]
- Cui, P.; Zhu, Y.Y.; Han, Y.S.; Chen, X.Q.; Zhuang, J.Q. The 12 May Wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation. Landslides 2009, 6, 209–223. [Google Scholar] [CrossRef]
- Carling, P.A. Freshwater megaflood sedimentation: What can we learn about generic processes? Earth Sci. Rev. 2013, 125, 87–113. [Google Scholar] [CrossRef]
- Carling, P.A.; Fan, X. Particle comminution defines megaflood and superflood energetics. Earth Sci. Rev. 2020, 204, 103087. [Google Scholar] [CrossRef]
- Turzewski, M.D.; Huntington, K.W.; LeVeque, R.J. The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. J. Geophys. Res Earth. 2019, 124, 1056–1079. [Google Scholar] [CrossRef]
- Teller, J.T.; Leverington, D.W.; Mann, J.D. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quat. Sci. Rev. 2002, 21, 1–887. [Google Scholar] [CrossRef]
- Garcia-Castellanos, D.; Estrada, F.; Jimenez-Munt, I.; Gorini, C.; Fernandez, M.; Verges, J.; De Vicente, R. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature. 2009, 462, 778–781. [Google Scholar] [CrossRef]
- Burr, D.M.; Carling, P.A.; Baker, V.R. Megaflooding on Earth and Mars; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Anacona, P.I.; Mackintosh, A.; Norton, K. Reconstruction of a glacial lake outburst flood (GLOF) in the Engano Valley, Chilean Patagonia: Lessons for GLOF Risk management. Sci. Total Environ. 2015, 527–528, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bohorquez, P.; Cañada-Pereira, P.; Jimenez-Ruiz, P.J.; del Moral-Erencia, J.D. The fascination of a shallow-water theory for the formation of megaflood-scale dunes and antidunes. Earth Sci. Rev. 2019, 193, 91–108. [Google Scholar] [CrossRef]
- George, D.L. Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset dam-break flood (France, 1959). Int. J. Numer. Methods Fluids 2011, 66, 1000–1018. [Google Scholar] [CrossRef]
- Swartenbroekx, C.; Zech, Y.; Soares-Frazão, S. Two-dimensional two-layer shallow water model for dam break flows with significant bed load transport. Int. J. Numer. Methods Fluids 2013, 73, 477–508. [Google Scholar] [CrossRef]
- Hou, J.; Liang, Q.; Simons, F.; Hinkelmann, R. A 2D well-balanced shallow flow model for unstructured grids with novel slope source term treatment. Adv. Water Resour. 2013, 52, 107–131. [Google Scholar] [CrossRef]
- Ma, D.J.; Sun, D.J.; Yin, X.Y. Solution of the 2D shallow water equations with source terms in surface elevation splitting form. Int. J. Numer. Methods Fluids 2007, 55, 431–454. [Google Scholar] [CrossRef]
- Liang, Q.; Borthwick, A.G.L. Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography. Comput. Fluids 2009, 38, 221–234. [Google Scholar] [CrossRef]
- Rogers, B.; And, M.F.; Borthwick, A.G.L. Adaptive Q-tree Godunov-type scheme for shallow water equations. Int. J. Numer. Methods Fluids 2001, 3, 247–280. [Google Scholar] [CrossRef]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics. An Advanced Introduction with OpenFoam® and Matlab®; Springer: Berlin, Germany, 2016. [Google Scholar]
- Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction; Springer: Berlin, Germany, 2013. [Google Scholar]
- Van Leer, B. Towards the ultimate conservative difference scheme, V: Asecond-order sequel to Godunov’s method. J. Comput. Phys. 1979, 32, 101–136. [Google Scholar] [CrossRef]
- Harten, A.; Lax, P.D.; van Leer, B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 1983, 25, 35–61. [Google Scholar] [CrossRef]
- Cea, L.; Puertas, J.; Vazquezcendon, M. Depth Averaged Modelling of Turbulent Shallow Water Flow with Wet-Dry Fronts. Arch. Comput. Method E 2007, 14, 303–341. [Google Scholar] [CrossRef]
- Hu, P.; Cao, Z.; Pender, G.; Tan, G. Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China. J. Hydrol. 2012, 464, 41–53. [Google Scholar] [CrossRef]
- Liu, L.; Liu, L.; Yang, G.W. Cache performance optimization of irregular sparse matrix multiplication on modern multi-core CPU and GPU. High Technol. Lett. 2013, 339–345. [Google Scholar] [CrossRef]
- Wu, W. Computational River Dynamics; Crc Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Cao, Z.; Pender, G.; Wallis, S.; Carling, P. Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng. 2004, 130, 689–703. [Google Scholar] [CrossRef]
- Liang, Q. Flood Simulation Using a Well-Balanced Shallow Flow Model. J. Hydraul. Eng. 2010, 136, 669–675. [Google Scholar] [CrossRef]
- Song, L.; Zhou, J.; Li, Q.Q.; Yang, X.L.; Zhang, Y.C. An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography. Int. J. Numer. Methods Fluids 2011, 67, 960–980. [Google Scholar] [CrossRef]
- Hiver, J. Adverse-slope and slope (bump). In Proceedings of the Concerted Action on Dam Break Modelling: Objectives, Project Report, Test Cases, Civil Engineering Department, Hydraulic Division, Universitè Catholique de Lille, Lille, France, 26–28 June 2000. [Google Scholar]
- Liao, C.; Wu, M.S.; Liang, S.J. Numerical simulation of a dam break for an actual river terrain environment. Hydrol. Processes 2007, 21, 447–460. [Google Scholar] [CrossRef]
- Rebollo, T.C.; Nieto, E.D.; Marmol, M.G. A flux-splitting solver for shallow water equations with source terms. Int. J. Numer. Methods Fluids 2003, 42, 23–55. [Google Scholar] [CrossRef]
- Zhou, J.G.; Causon, D.M.; Minghan, C.G. Numerical prediction of dam-break flows in general geometries with complex bed topography. J. Hydraul. Eng. 2004, 130, 332–340. [Google Scholar] [CrossRef]
- Kawahara, M.; Umetsu, T. Finite element method for moving boundary problems in river flow. Int. J. Numer. Methods Fluids 1986, 6, 365–386. [Google Scholar] [CrossRef]
- Brufau, P.; Vázquez-Cendón, M.E.; García-Navarro, P. A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 2002, 39, 247–275. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Tang, J.; Wang, H.; Cao, Y.; Bazai, N.A.; Chen, H.; Liu, D. A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation. Water 2021, 13, 221. https://doi.org/10.3390/w13020221
Liu D, Tang J, Wang H, Cao Y, Bazai NA, Chen H, Liu D. A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation. Water. 2021; 13(2):221. https://doi.org/10.3390/w13020221
Chicago/Turabian StyleLiu, Dingzhu, Jinbo Tang, Hao Wang, Yang Cao, Nazir Ahmed Bazai, Huayong Chen, and Daochuan Liu. 2021. "A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation" Water 13, no. 2: 221. https://doi.org/10.3390/w13020221
APA StyleLiu, D., Tang, J., Wang, H., Cao, Y., Bazai, N. A., Chen, H., & Liu, D. (2021). A New Method for Wet-Dry Front Treatment in Outburst Flood Simulation. Water, 13(2), 221. https://doi.org/10.3390/w13020221