Effects of Biochar Addition on Rice Growth and Yield under Water-Saving Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Method
2.3. Field Measurement and Sampling
2.4. Statistical Analysis
3. Results
3.1. Effects of Biochar on the Tiller Number of Rice under Water-Saving Irrigation
3.2. Effects of Biochar on Rice Plant Height under Water-Saving Irrigation
3.3. Effects of Biochar on Rice Yield under Water-Saving Irrigation
3.4. Effects of Biochar on Irrigation Water Use Efficiency under Water-Saving Irrigation
4. Discussion
5. Conclusions
- (1)
- Biochar application could promote rice tiller numbers and plant height under water-saving irrigation. The average rice tiller number with a medium amount of biochar (20 t/ha) was the highest, and increased by 8.85–12.17% compared to the control. With the increased amount of biochar application, both the average and maximum values of rice plant height increased. Rice plant height with a high amount of biochar (40 t/ha) always maintained a plant height advantage of 2.88–13.64 cm compared with the control.
- (2)
- Rice yield under water-saving irrigation improved with the increase in biochar input. Rice yield with a high biochar application (40 t/ha) was the highest. Its average yield in the two years reached 7938.50 kg/ha, increased by 24.44% compared with the control. The application of biochar improved the filled grain number, productive panicle number, and seed setting rate, which were the main reasons for the increase in rice yield.
- (3)
- Compared with flooding irrigation, the rice tiller number and plant height under water-saving irrigation were restrained to some extent by water deficit, and the yield decreased slightly. However, the amount of irrigation water was significantly reduced. The irrigation water input with a high amount of biochar (40 t/ha) and water-saving irrigation decreased by 40.53–55.11%, and the irrigation water use efficiency increased by 91.05% on average compared to flooding irrigation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Ye, X.; Cheng, T.; Chen, J.; Yang, X.; Wang, L.; Zhang, R. A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory. Atmos. Environ. 2008, 42, 8432–8441. [Google Scholar] [CrossRef]
- Cao, G.L.; Zhang, X.Y.; Zeng, F.C. Inventory of black carbon and organic carbon emissions from China. Atmos. Environ. 2006, 40, 6516–6527. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, J.; Qi, Y.; Li, C.; Chen, J.; Wang, X.; He, J.; Wang, S.; Hao, J.; Zhang, L.; et al. Emission characterization, environmental impact, and control measure of PM2.5 emitted from agricultural crop residue burning in China. J. Clean. Prod. 2017, 149, 629–635. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Chen, W.F.; Zhang, W.M.; Meng, J. Advances and prospects in research of biochar utilization in agriculture. Sci. Agric. Sin. 2013, 46, 3324–3333. [Google Scholar]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental benefits of biochar. J. Environ. Qual. 2012, 41, 967. [Google Scholar]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 2017, 246, 110–122. [Google Scholar] [CrossRef]
- Seyfferth, A.L.; Amaral, D.; Limmer, M.A.; Guilherme, L.R.G. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice. Environ. Int. 2019, 128, 301–309. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Stromberger, M.E.; Lentz, R.D.; Dungan, R.S. Hardwood Biochar Influences Calcareous Soil Physicochemical and Microbiological Status. J. Environ. Qual. 2014, 43, 681–689. [Google Scholar]
- Krapfl, K.J.; Hatten, J.A.; Roberts, S.D.; Baldwin, B.S.; Rousseau, R.J.; Shankle, M.W. Soil properties, nitrogen status, and switchgrass productivity in a biochar-amended silty clay loam. Soil Sci. Soc. Am. J. 2014, 78, S136. [Google Scholar] [CrossRef]
- Sethupathi, S.; Ming, Z.; Rajapaksha, A.U.; Sang, R.L.; Nor, N.M.; Mohamed, A.R.; Al-Wabel, M.; Lee, S.R.; Ok, Y.S. Biochars as potential adsorbers of CH4, CO2 and H2S. Sustainability 2017, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Tang, H.; Liu, J.; Wang, C.; Li, Y.; Ge, T.; Jones, D.L.; Wu, J.S. Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agric. Ecosyst. Environ. 2014, 188, 264–274. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Streetperrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Brantley, K.; Savin, M.; Brye, K.; Longer, D. Pine woodchip biochar impact on soil nutrient concentrations and corn yield in a silt loam in the mid-southern U.S. Agriculture 2015, 5, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ma, S.; Zhao, Y.; Jing, M.; Xu, Y.; Chen, J. A field experiment on enhancement of crop yield by rice straw and corn stalk-derived biochar in northern china. Sustainability 2015, 7, 13713–13725. [Google Scholar] [CrossRef] [Green Version]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Cornelissen, G.; Martinsen, V.; Shitumbanuma, V.; Alling, V.; Breedveld, G.D.; Rutherford, D.W.; Sparrevik, M.; Hale, S.E.; Obia, A.; Mulder, J. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy 2013, 3, 256–274. [Google Scholar] [CrossRef] [Green Version]
- Wang, L. Research on application effect of carbon matrix bio-fertilizer on rice. Agric. Sci. Technol. Equip. 2017, 2, 14–15+18. [Google Scholar]
- Wang, Y.M.; Gao, Q.; Xue, L.H.; Yang, L.Z.; Li, H.X.; Feng, Y.F. Effects of different biochar application patterns on rice growth and yield. J. Agric. Resour. Environ. 2018, 1, 58–65. [Google Scholar]
- Li, Y. Water saving irrigation in china. Irrig. Drain. 2010, 55, 327–336. [Google Scholar] [CrossRef]
- Yang, S.H.; Peng, S.Z.; Xu, J.Z.; Yao, J.Q.; Jin, X.P.; Song, J. Characteristics and simulation of ammonia volatilization from paddy fields under different water and nitrogen management. Trans. Chin. Soc. Agric. Eng. 2012, 28, 99–104. [Google Scholar]
- China Meteorological Administration. Specifications for Agricultural Meteorological Observation, 1st ed.; China Meteorological Press: Beijing, China, 1993; pp. 32–35.
- Zhou, Y.L.; Zhang, Z.H.; Fan, R.Q.; Qian, X.Q.; Luo, J.; Lu, X.; Liu, Y.F.; Liu, L.Z. Effects of straw-returning modes on paddy soil properties and rice yield. Jiangsu J. Agric. Sci. 2016, 32, 786–790. [Google Scholar]
- Zhang, A.P.; Liu, R.L.; Gao, J.; Zhang, Q.W.; Xiao, J.N.; Chen, Z.; Yang, S.Q.; Hui, J.Z.; Yang, Z.L. Effects of biochar on nitrogen losses and rice yield in anthropogenic-alluvial soil irrigated with yellow river water. J. Agro-Environ. Sci. 2014, 33, 2395–2403. [Google Scholar]
- Zhang, X.; Zhang, G.L.; Sun, Q.N.; Peng, Y.B.; Wang, X.D.; Li, M.; Wang, Y. Influence of biochar from spent mushroom substrate on properties of pig manure compost and rice growth. J. Agro-Environ. Sci. 2014, 33, 2036–2041. [Google Scholar]
- Chen, Y.; Zhang, M.L.; Liu, X.P.; Dai, G.J.; Hou, S.G. Effects of biochar on chlorophyll fluorescence at full heading stage and yield components of rice. Crops 2016, 3, 94–98. [Google Scholar]
- Zhang, W.M.; Meng, J.; Wang, J.Y.; Fan, S.X.; Chen, W.F. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agron. Sin. 2013, 39, 1445. [Google Scholar] [CrossRef]
- Liu, X.X.; Wu, D.T.; Zhu, W.F.; Tao, Y.B.; Wang, J.J.; Chen, Y.D. Effects of exogenous biochar addition on rice yield and soil properties. J. Zhejiang Agric. Sci. 2016, 57, 1776–1779. [Google Scholar]
- Dong, D.; Yang, M.; Wang, C.; Wang, H.L.; Li, Y.; Luo, J.F.; Wu, W.X. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field. J. Soils Sediments 2013, 13, 1450–1460. [Google Scholar] [CrossRef]
- Beusch, C.; Cierjacks, A.; Bohm, J.; Mertens, J.; Bischoff, W.A.; de Araujo, J.C.; Kaupenjohann, M. Biochar vs clay: Comparison of their effects on nutrient retention of a tropical arenosol. Geoderma 2019, 337, 524–535. [Google Scholar] [CrossRef]
- Kang, S.W.; Kim, S.H.; Park, J.H.; Seo, D.C.; Ok, Y.S.; Cho, J.S. Effect of biochar derived from barley straw on soil physicochemical properties, crop growth, and nitrous oxide emission in an upland field in South Korea. Environ. Sci. Pollut. Res. 2018, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, F.; Ravnskov, S.; Rubaek, G.H.; Sun, Z.; Andersen, M.N. Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. J. Agron. Crop Sci. 2017, 203, 131–145. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Hidetoshi, A.; Benjamink, S.; Haefelem, S.; Khamdok, S.; Koki, H.; Yoshiyuki, K.; Yoshio, I.; Tatsuhiko, A.; Takeshi, H. Biochar amendment techniques for upland rice production in northern Laos 1. soil physical properties, leaf spad and grain yield. Field Crop. Res. 2009, 111, 81–84. [Google Scholar]
- Lu, J.J.; Gao, C.H.; Li, J.H.; Jin, D.S.; Lu, C.D.; Dong, Y.Z. Effect of biochar on soil nutrients and corn growth in farmland of loess area. Chin. Agric. Sci. Bull. 2017, 33, 92–99. [Google Scholar]
- Qiu, H.Y.; Sun, J.; Chen, G.; Zhou, K.N.; Liang, J.X. Effect of biochar on yield and agronomic traits of maize in new-reclamation land of Ningxia. Ningxia J. Agric. For. Sci. Technol. 2017, 58, 27–30. [Google Scholar]
Year | Activity | Application of Nitrogen Fertilizer |
---|---|---|
(kg/ha) | ||
2016 | Base fertilizer (29 Jun) | 72.0 |
Tillering fertilizer (16 Jul) | 97.0 | |
Panicle fertilizer (9 Aug) | 104.0 | |
Total nitrogen | 273.0 | |
2017 | Base fertilizer (29 Jun) | 153.6 |
Tillering fertilizer (16 Jul) | 69.6 | |
Panicle fertilizer (11 Aug) | 69.6 | |
Total nitrogen | 292.8 |
Item | Tiller Number/(×104 × ha−1) | Plant Height/(cm) | ||
---|---|---|---|---|
Year | 2016 | 2017 | 2016 | 2017 |
C0 | 263 ± 9.58 c | 275.79 ± 16.95 c | 64.29 ± 4.25 c | 62.87 ± 4.7 b |
C20 | 295 ± 10.46 a | 300.21 ± 15.72 b | 68.1 ± 4.74 b | 65.12 ± 5.09 ab |
C40 | 284.63 ± 10.03 b | 290 ± 15.1 bc | 68.98 ± 4.93 b | 67.82 ± 4.7 a |
F40 | 283.13 ± 11.58 b | 329.85 ± 18.33 a | 73.8 ± 5.91 a | 65.12 ± 5.11 ab |
Year | Treatment | Productive Panicle Number | Grain Number | Filled Grain Number | Seed Setting Rate | 1000-Grain Weight | Actual Yield |
---|---|---|---|---|---|---|---|
(×104 panicle/ha) | (/panicle) | (/panicle) | (%) | (g) | (kg/ha) | ||
2016 | C0 | 247.05 ± 12 b | 107.58 ± 0.49 a | 80.50 ± 7.25 b | 74.80 ± 6.40 a | 22.40 ± 0.67 a | 7386 ± 137 b |
C20 | 286.05 ± 15 a | 104.63 ± 7.86 a | 87.30 ± 4.32 ab | 83.60 ± 2.15 a | 23.00 ± 1.58 a | 8075 ± 569 ab | |
C40 | 291 ± 22.05 a | 109.76 ± 15.67 a | 93.20 ± 10.40 a | 85.30 ± 2.70 a | 23.60 ± 1.42 a | 8552 ± 347 ab | |
F40 | 316.05 ± 7.95 a | 105.87 ± 1.54 a | 92.40 ± 6.90 a | 87.20 ± 5.25 a | 23.40 ± 3.05 a | 9097 ± 145.8 a | |
2017 | C0 | 179.25 ± 7.5 b | 98.52 ± 13.40 a | 64.22 ± 5.58 a | 65.19 ± 3.20 a | 23.91 ± 1.45 a | 5373 ± 585 a |
C20 | 265.2 ± 11.25 ab | 116.66 ± 17.37 a | 87.13 ± 8.70 a | 74.69 ± 3.70 a | 21.62 ± 2.14 a | 6665 ± 199 a | |
C40 | 268.95 ± 59.7 ab | 113.40 ± 7.19 a | 85.39 ± 17.21 a | 75.30 ± 10.40 a | 23.25 ± 0.00 a | 7325 ± 844 a | |
F40 | 302.55 ± 3.75 a | 98.08 ± 10.33 a | 72.69 ± 5.96 a | 74.11 ± 1.70 a | 23.99 ± 0.06 a | 7253 ± 91 a |
Year | 2016 | 2017 | ||
---|---|---|---|---|
Treatment | Irrigation Water | YWUEIR | Irrigation Water | YWUEIR |
(mm) | (kg/m3) | (mm) | (kg/m3) | |
C0 | 498 | 1.482 | 619 | 0.868 |
C20 | 473 | 1.706 | 576 | 1.158 |
C40 | 485 | 1.764 | 592 | 1.237 |
F40 | 1080 | 0.842 | 996 | 0.728 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yang, S.; Ding, J.; Jiang, Z.; Sun, X. Effects of Biochar Addition on Rice Growth and Yield under Water-Saving Irrigation. Water 2021, 13, 209. https://doi.org/10.3390/w13020209
Chen X, Yang S, Ding J, Jiang Z, Sun X. Effects of Biochar Addition on Rice Growth and Yield under Water-Saving Irrigation. Water. 2021; 13(2):209. https://doi.org/10.3390/w13020209
Chicago/Turabian StyleChen, Xi, Shihong Yang, Jie Ding, Zewei Jiang, and Xiao Sun. 2021. "Effects of Biochar Addition on Rice Growth and Yield under Water-Saving Irrigation" Water 13, no. 2: 209. https://doi.org/10.3390/w13020209
APA StyleChen, X., Yang, S., Ding, J., Jiang, Z., & Sun, X. (2021). Effects of Biochar Addition on Rice Growth and Yield under Water-Saving Irrigation. Water, 13(2), 209. https://doi.org/10.3390/w13020209