Monetary Valuation of Flood Protection Ecosystem Service Based on Hydrological Modelling and Avoided Damage Costs. An Example from the Čierny Hron River Basin, Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modelling Surface Water Runoff
2.3. Determination of the Precipitation Amount Causing Floods with Different Land Uses
2.4. Monetary Valuation of Flood Protection Ecosystem Service
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- van Oudenhoven, A.P.E.; Petz, K.; Alkemade, R.; Hein, L.; de Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Haines-Young, R.H.; Potschin, M.P. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis. BES Ecological Reviews Series; Raffaelli, D., Frid, C., Eds.; CUP: Cambridge, UK, 2010; pp. 110–139. [Google Scholar]
- Kandziora, M.; Burkhard, B.; Müller, F. Interaction of ecosystem properties, ecosystem integrity and ecosystem service indicators—A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Stürck, J.; Poortinga, A.; Verburg, P.H. Mapping ecosystem services: The supply and demand of floodregulation services in Europe. Ecol. Indic. 2014, 38, 198–211. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Syrbe, R.U.; Walz, U. Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecol. Indic. 2012, 21, 80–88. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands—Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Blaschke, T. The role of the spatial dimension within the framework of sustainable landscapes and natural capital. Landsc. Urban Plan. 2006, 75, 198–226. [Google Scholar] [CrossRef]
- Pretty, J.; Brett, C.; Gee, D.; Hine, R.; Mason, C.; Morison, J.; Raven, H.; MD Rayment, M.D.; van der Bijlet, G. An assessment of the total external costs of UK agriculture. Agric. Syst. 2000, 65, 113–136. [Google Scholar] [CrossRef]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Bastian, O.; Grunewald, K.; Syrbe, R.U.; Walz, U.; Wende, W. Landscape services: The concept and its practical relevance. Landsc. Ecol. 2014, 29, 1463–1479. [Google Scholar] [CrossRef]
- Eade, J.D.O.; Moran, D. Spatial Economic Valuation: Benefits Transfer using Geographical Information Systems. J. Environ. Manage. 1996, 48, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Bateman, I.J.; Jones, A.P.; Lovett, A.A.; Lake, I.R.; Day, B.H. Applying geographical information systems (GIS) to environmental and resource economics. Environ. Resour. Econ. 2002, 22, 219–269. [Google Scholar] [CrossRef]
- Nedkov, S.; Boyanova, K.; Burkhard, B. Quantifying, Modelling and Mapping Ecosystem Services in Watersheds. In Ecosystem Services and River Basin Ecohydrology; Chicharo, L., Müller, F., Fohrer, N., Eds.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Villamagna, A.M.; Angermeier, P.L.; Bennett, E.M. Capacity, pressure, demand, and flow: A conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 2013, 15, 114–121. [Google Scholar] [CrossRef]
- Vargas, L.; Willemen, L.; Hein, L. Assessing the Capacity of Ecosystems to Supply Ecosystem Services Using Remote Sensing and An Ecosystem Accounting Approach. Environ. Manage. 2019, 63, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Barredo, J. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [Google Scholar] [CrossRef]
- European Environment Agency. River Floods. Indicator Assessment/Data and Maps; Publications Office of the European Union: Luxembourg, 2019.
- Stromberg, D. Natural Disasters, Economic Development, and Humanitarian Aid. J. Econ. Perspect. 2007, 21, 199–222. [Google Scholar] [CrossRef]
- Smith, K.; Petley, D.N. Environmental Hazards. Assessing Risk and Reducing Disaster, 5th ed.; Routledge Taylor & Francis Group: New York, NY, USA, 2009. [Google Scholar]
- Kousky, C.; Walls, M. Floodplain conservation as a flood mitigation strategy: Examining costs and benefits. Ecol. Econ. 2014, 104, 119–128. [Google Scholar] [CrossRef]
- Ciscar, J.C.; Iglesias, A.; Feyen, L.; Szabó, L.; Van Regemorter, D.; Amelung, B.; Nicholls, R.; Watkiss, P.; Christensen, O.B.; Dankers, R.; et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 2678–2683. [Google Scholar] [CrossRef] [Green Version]
- Jongman, B.; Ward, P.J.; Aerts, J.C.J.H. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Chang. 2012, 22, 823–835. [Google Scholar] [CrossRef]
- European Environment Agency. Economic Losses from Climate-Related Extremes in Europe Publications. Indicator Assessment/Data and Maps; Office of the European Union: Luxembourg, 2019.
- Tallis, H.; Mooney, H.; Andelman, S.; Balvanera, P.; Cramer, W.; Karp, D.; Polasky, S.; Reyers, B.; Ricketts, T.; Running, S.; et al. A Global System for Monitoring Ecosystem Service Change. BioScience 2012, 62, 977–986. [Google Scholar] [CrossRef] [Green Version]
- Goulder, L.; Kennedy, D. Valuing ecosystem services: Philosophical bases and empirical methods. In Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G.C., Ed.; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; de Groot, R.S.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- de Groot, R.S. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Burkhard, B.; Maes, J. (Eds.) Mapping Ecosystem Services; Pensoft Publishers: Sofia, Bulgaria, 2017. [Google Scholar]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Boyanova, K.; Nedkov, S.; Burkhard, B. Quantification and Mapping of Flood Regulating Ecosystem Services in Different Watersheds—Case Studies in Bulgaria and Arizona, USA. In Thematic Cartography for the Society. Lecture Notes in Geoinformation and Cartography; Bandrova, T., Konecny, M., Zlatanova, S., Eds.; Springer: Cham, Germany, 2014; pp. 237–255. [Google Scholar]
- Posthumus, H.; Rouquette, J.R.; Morris, J.; Gowing, D.J.G.; Hess, T.M. 2010. A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England. Ecol. Econ. 2010, 69, 1510–1523. [Google Scholar] [CrossRef]
- Turner, R.K.; Pearce, D.; Bateman, I. Environmental Economics: An Elementary Introduction; Harvester Wheatsheaf: New York, NY, USA, 1994. [Google Scholar]
- Farber, S.C.; Constanza, R.; Wilson, M.A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 2002, 41, 375–392. [Google Scholar] [CrossRef]
- Christie, M.; Fazey, I.; Cooper, R.; Hyde, T.; Deri, A.; Hughes, L.; Bush, G.; Brander, L.; Nahman, A.; de Lange, W. An Evaluation of Economic and Non-Economic Techniques for Assessing the Importance of Biodiversity to People in Developing Countries; Defra: London, UK, 2008. [Google Scholar]
- Freeman III, A.M.; Herriges, J.A.; Kling, C.L. The Measurement of Environmental and Resource Values: Theory and Methods, 3rd ed.; RFF PRESS, Taylor & Francis: New York, NY, USA, 2014. [Google Scholar]
- de Groot, R.S.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernand, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Crossman, N.D.; Nedkov, S.; Brander, L. Discussion Paper 7: Water Flow Regulation for Mitigating River and Coastal Flooding. Paper Submitted to the Expert Meeting on Advancing the Measurement of Ecosystem Services for Ecosystem Accounting, New York, 22–24 January 2019 and Subsequently Revised. Version of 1 April 2019. Available online: https://seea.un.org/events/expert-meeting-advancing-measurement-ecosystem-services-ecosystem-accounting (accessed on 15 September 2020).
- Kramer, R.A.; Richter, D.D.; Pattanayak, S.; Sharma, N.P. Ecological and Economic Analysis of Watershed Protection in Eastern Madagascar. J Environ. Manage. 1997, 49, 277–295. [Google Scholar] [CrossRef] [Green Version]
- Grygoruk, M.; Mirosław-Świątek, D.; Chrzanowska, W.; Ignar, S. How much for water? Economic assessment and mapping of floodplain water storage as a catchment-scale ecosystem service of Wetlands. Water 2013, 5, 1760–1779. [Google Scholar] [CrossRef] [Green Version]
- Barth, N.-C.; Döll, P. Assessing the ecosystem service flood protection of a riparian forest by applying a cascade approach. Ecosyst. Serv. 2016, 21, 39–52. [Google Scholar]
- Zhai, G.; Sato, T.; Fukuzono, T.; Ikeda, S.; Yoshida, K. Willingness to pay for flood risk reduction and its determinats in Japan. J. Am. Water Resour. Assoc. 2006, 42, 927–940. [Google Scholar] [CrossRef]
- Entorf, H.; Jensen, A. Willingness-to-pay for hazard safety—A case study on the valuation of flood risk reduction in Germany. Saf. Sci. 2020, 128, 104657. [Google Scholar] [CrossRef]
- O’Connell, P.; Ewen, J.G.; O’Donnell, G.; Quinn, P. Is there a link between agricultural land-use management and flooding? Hydrol. Earth Syst. Sci. 2007, 11, 96–107. [Google Scholar] [CrossRef] [Green Version]
- United Nations Department of Humanitarian Affairs. Internationally Agreed Glossary of Basic Terms Related to Disaster Management; DHA/93/36; UN: Geneva, Switzerland, 1992. [Google Scholar]
- Department for Environment, Food and Rural Affairs. Guidelines for Environmental Risk Assessment and Management; DEFRA: London, UK, 2000.
- Birkmann, J. Measuring vulnerability to promote disaster-resilient societies: Conceptual frameworks and definitions. Inst. Environ. Human Secur. J. 2006, 5, 7–54. [Google Scholar]
- Pamungkas, A.; Bekessy, S.A.; Lane, R. Vulnerability Modelling to Improve Assessment Process on Community Vulnerability. Procedia Soc. Behav. Sci. 2014, 135, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Dunford, R.W.; Harrison, P.A.; Bagstad, K.J. Computer modelling for ecosystem service assessment. In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017; pp. 126–137. [Google Scholar]
- Fohrer, N.; Haverkamp, S.; Frede, H.G. Assessment of the effects of land use patterns on hydrologic landscape functions: Development of sustainable land use concepts for low mountain range areas. Hydrol. Process. 2005, 19, 659–672. [Google Scholar] [CrossRef]
- Kubinský, D.; Weis, K.; Fuska, J.; Lehotský, M.; Petrovič, F. Changes in retention characteristics of 9 historical artificial water reservoirs near Banska Stiavnica, Slovakia. Open Geosci. 2015, 7, 880–887. [Google Scholar]
- Wałęga, A.; Młyński, D.; Wojkowski, J.; Radecki-Pawlik, A.; Lepeška, T. New Empirical Model Using Landscape Hydric Potential Method to Estimate Median Peak Discharges in Mountain Ungauged Catchments. Water 2020, 12, 983. [Google Scholar] [CrossRef] [Green Version]
- Ministerstvo Životného Prostredia SR. Predbežné Hodnotenie Povodňového Rizika v Čiastkovom Povodí Hrona—Aktualizácia 2018; MŽP SR, SVP SR: Bratislava, Slovakia, 2018; Available online: https://www.minzp.sk/files/sekcia-vod/hodnotenie-rizika-2018/hron/phpr-hron.pdf (accessed on 20 April 2020).
- Climatic Atlas of Slovakia. Available online: http://klimat.shmu.sk/kas/ (accessed on 20 April 2020).
- SWAT Model. Available online: https://swat.tamu.edu (accessed on 14 March 2020).
- HEC-RAS Model (US Army Corps of Engineers, Hydrologic Engineering Center, Davis). Available online: www.hec.usace.army.mil (accessed on 18 March 2020).
- Geodesy, Cartography and Cadastre Authority of the Slovak Republic. Geoportal. Available online: https://www.geoportal.sk/sk/zbgis_smd/na-stiahnutie/ (accessed on 20 March 2020).
- National Forest Centre, Slovakia. Forest GIS. Available online: http://gis.nlcsk.org/lgis/ (accessed on 20 March 2020).
- Soil Science and Conservation Research Institute, Slovakia. Soil Maps. Available online: http://www.podnemapy.sk (accessed on 21 March 2020).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation, Technical Report No. 406; Version 2009; Grassland, Soil and Water Research Laboratory—Agricultural Research Service Blackland Research Center—Texas AgriLife Research, Texas Water Resources Institute: Forney, TX, USA, 2011. [Google Scholar]
- Essenfelder, A.H. SWAT Weather Database: A Quick Guide; Version: V.0.16.06; 2016; Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjHm_PM_pzuAhURK6YKHS8bC1AQFjABegQIAhAC&url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FArthur_Hrast_Essenfelder%2Fpublication%2F294535100_SWAT_Weather_Database%2Fdata%2F5756f68e08aef6cbe35f4e5b%2FWeatherDatabase-QuickGuide.pdf&usg=AOvVaw1R_TylSnZhwKtGjYkWZu63 (accessed on 22 March 2020).
- Slovak Hydrometeorological Institute. Available online: http://www.shmu.sk/en (accessed on 22 March 2020).
- Slovak Road Administration. Available online: www.ssc.sk/en/home.ssc (accessed on 22 March 2020).
- Slovak Environment Agency. Available online: www.sazp.sk/en (accessed on 22 March 2020).
- OpenStreetMap. Available online: www.openstreetmap.org (accessed on 22 March 2020).
- Slovak Water Management Enterprise. Available online: www.svp.sk/en (accessed on 22 March 2020).
- Gaál, L.; Lapin, M.; Faško, P. Maximálne viacdenné úhrny zrážok na Slovensku. In Extrémy Počasí a Podnebí, Proceedings of Seminar Extremes of Weather and Climate, Brno, Czech Republic, 11 March 2004; Rožnovský, J., Litschmann, T., Eds.; Český Hydrometeorologický Ústav: Brno, Czech Republic, 2004; ISBN 80-86690-12-1. [Google Scholar]
- Soil Conservation Service. National Engineering Handbook, Section 4, Hydrology; Department of Agriculture: Washington, DC, USA, 1964.
- United States Department of Agriculture. Module 104: Runoff Curve Number Computations. Study Guide. Hydrology Training Series; United States Department of Agriculture: Washington, DC, USA, 1989.
- Water Research Institute of Slovakia. Available online: http://www.vuvh.sk (accessed on 25 March 2020).
- Brath, A.; Montanari, A.; Moretti, G. Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). J. Hydrol. 2006, 324, 141–153. [Google Scholar] [CrossRef]
- Niehoff, D.; Fritsch, U.; Bronstert, A. Land-use impacts on storm runoff generation: Scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol. 2002, 267, 80–93. [Google Scholar] [CrossRef]
- Boyd, J.; Banzhaf, S. What are ecosystem services? Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Zhang, M.F.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, H.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Farooqi, T.J.A.; Li, X.; Yu, Z.; Liu, S.; Sun, O.J. Reconciliation of research on forest carbon sequestration and water conservation. J. For. Res. 2020. [CrossRef]
- Minďáš, J.; Škvarenina, J.; Střelcová, K. Význam lesa v hydrologickom režime krajiny. Zivotn. Prostr. 2001, 3, 146–150. [Google Scholar]
- Minďáš, J.; Čaboun, V. 2002: Influence of Vegetation on Catchment Runoff; Final Report of Project VTP 27-64 E0203; LVÚ: Zvolen, Slovakia, 2002. [Google Scholar]
- Bíba, M.; Oceánska, Z.; Vícha, Z.; Jařabáč, M. Forest-hydrological research in small experimental catchments in the Beskydy Mountains. J. Hydrol. Hydromech. 2006, 54, 113–122. [Google Scholar]
- Pasquino, V.; Saulino, L.; Pelosi, A.; Allevato, E.; Rita, A.; Todaro, L.; Saracino, A.; Chirico, G.B. Hydrodynamic behaviour of European black poplar (Populus nigra L.) under coppice management along Mediterranean river ecosystems. River Res. Appl. 2018, 34, 586–594. [Google Scholar] [CrossRef]
- Douglas, J.; Gasiorek, J.; Swaffield, J.; Jack, L. Fluid Mechanics, 5th ed.; Harlow: Pearson, UK, 2005. [Google Scholar]
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Preti, F.; Chirico, G.B. Evaluation of flow resistance models based on field experiments in a partly vegetated reclamation channel. Geosciences 2020, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, P.; Felice, S.D.; Pasquino, V.; Doria, G.P. Use of conventional flow resistance equations and a model for the Nikuradse roughness in vegetated flows at high submergence. J. Hydro. Hydromech. 2018, 66, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Pellicani, R.; Parisi, A.; Iemmolo, G.; Apollonio, C. Economic Risk Evaluation in Urban Flooding and Instability-Prone Areas: The Case Study of San Giovanni Rotondo (Southern Italy). Geosciences 2018, 8, 112. [Google Scholar] [CrossRef] [Green Version]
- Apollonio, C.; Bruno, M.F.; Iemmolo, G.; Molfetta, M.G.; Pellicani, R. Flood Risk Evaluation in Ungauged Coastal Areas: The Case Study of Ippocampo (Southern Italy). Water 2020, 12, 1466. [Google Scholar] [CrossRef]
- Lamb, R.; Keef, C.; Tawn, J.A.; Laeger, S.; Meadowcroft, I.; Surendran, S.; Dunning, P.; Batstone, C. A new method to assess the risk of local and widespread flooding on rivers and coasts. J. Flood Risk Manag. 2010, 3, 323–336. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Arcangeletti, E.; Nardi, F. Flood mapping in ungauged basins using fully continuous hydrologic–hydraulic modeling. J. Hydrol. 2013, 487, 39–47. [Google Scholar] [CrossRef]
- Teng, J.; Jakeman, A.; Vaze, J.; Croke, B.F.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Bastian, O.; Syrbe, R.U.; Rosenberg, M.; Rahe, D.; Grunewald, K. The five pillar EPPS framework for quantifying, mapping and managing ecosystem services. Ecosyst. Serv. 2013, 4, 15–24. [Google Scholar] [CrossRef]
- de Groot, R.S. Functions of Nature: Evaluation of Nature in Environmental Planning, Management and Decision Making; Wolters-Noordhoff BV: Groningen, The Netherlands, 1992. [Google Scholar]
- Izakovičová, Z.; Špulerová, J.; Petrovič, F. Integrated Approach to Sustainable Land Use Management. Environments 2018, 5, 37. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallay, I.; Olah, B.; Gallayová, Z.; Lepeška, T. Monetary Valuation of Flood Protection Ecosystem Service Based on Hydrological Modelling and Avoided Damage Costs. An Example from the Čierny Hron River Basin, Slovakia. Water 2021, 13, 198. https://doi.org/10.3390/w13020198
Gallay I, Olah B, Gallayová Z, Lepeška T. Monetary Valuation of Flood Protection Ecosystem Service Based on Hydrological Modelling and Avoided Damage Costs. An Example from the Čierny Hron River Basin, Slovakia. Water. 2021; 13(2):198. https://doi.org/10.3390/w13020198
Chicago/Turabian StyleGallay, Igor, Branislav Olah, Zuzana Gallayová, and Tomáš Lepeška. 2021. "Monetary Valuation of Flood Protection Ecosystem Service Based on Hydrological Modelling and Avoided Damage Costs. An Example from the Čierny Hron River Basin, Slovakia" Water 13, no. 2: 198. https://doi.org/10.3390/w13020198
APA StyleGallay, I., Olah, B., Gallayová, Z., & Lepeška, T. (2021). Monetary Valuation of Flood Protection Ecosystem Service Based on Hydrological Modelling and Avoided Damage Costs. An Example from the Čierny Hron River Basin, Slovakia. Water, 13(2), 198. https://doi.org/10.3390/w13020198