Sewer Mining as a Distributed Intervention for Water-Energy-Materials in the Circular Economy Suitable for Dense Urban Environments: A Real World Demonstration in the City of Athens
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description of the Circular Approach
2.2. Sewer Mining Technology
2.2.1. Concept and Set Up
2.2.2. Experimental Design
2.2.3. Operating Parameters
2.2.4. Cost Parameters
2.3. Production of Compost and Energy Recovery Technologies
3. Results and Discussion
3.1. Athens Demo Case Start-Up
3.2. Athens Demo Case Overall Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Economic Forum—Home. Available online: http://www3.weforum.org/maintenance/public.html (accessed on 29 January 2020).
- Zarei, M. Wastewater resources management for energy recovery from circular economy perspective. Water-Energy Nexus 2020, 3, 170–185. [Google Scholar] [CrossRef]
- World Water Assessment Programme (WWAP). The United Nations World Water Development Report 2017—Wastewater: The Untapped Resource; UNESCO: Paris, France, 2017; Available online: http://unesdoc.unesco.org/images/0024/002471/247153e.pdf (accessed on 3 September 2021).
- Environmental Performance Index; Yale University. 2018. Available online: https://epi.yale.edu/epi-results/2020/component/epi (accessed on 3 September 2021).
- Angelakis, A.N.; Gikas, P. Water Reuse: Overview of Current Practices and Trends in the World with Emphasis on EU States. Water Util. J. 2014, 8, 67–78. [Google Scholar]
- Makropoulos, C.; Rozos, E.; Tsoukalas, I.; Plevri, A.; Karakatsanis, G.; Karagiannidis, L.; Makri, E.; Lioumis, C.; Noutsopoulos, C.; Mamais, D.; et al. Sewer-mining: A water reuse option supporting circular economy, public service provision and entrepreneurship. J. Environ. Manag. 2017, 216, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Sydney Water Sewer Mining. How to Set up a Sewer Mining Scheme. 2019. Available online: http://www.waterforlife.nsw.gov.au/recycling (accessed on 3 September 2021).
- Chanan, A.; Woods, P. Introducing total water cycle management in Sydney: A Kogarah Council initiative. Desalination 2006, 187, 11–16. [Google Scholar] [CrossRef]
- Xie, M.; Nghiem, L.D.; Price, W.E.; Elimelech, M. A Forward Osmosis—Membrane Distillation Hybrid Process for Direct Sewer Mining: System Performance and Limitations. Environ. Sci. Technol. 2013, 47, 13486–13493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewer Mining Technology Trial at Flemington Racecourse. Smart Water Fund. Project Library. Available online: https://waterportal.com.au/swf/projects/item/39-sewer-mining-technology-trial-at-flemington-racecourse (accessed on 30 August 2021).
- Plevri, A.; Mamais, D.; Noutsopoulos, C.; Makropoulos, C.; Andreadakis, A.; Rippis, K.; Smeti, E.; Lytras, E.; Lioumis, C. Promoting on-site urban wastewater reuse through MBR—RO treatment. Desalination Water Treat. 2017, 91, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Water & Circular Economy—NextGen Water. Available online: https://nextgenwater.eu/water-circular-economy/ (accessed on 29 January 2020).
- Plevri, A.; Noutsopoulos, C.; Mamais, D.; Makropoulos, C.; Andreadakis, A.; Lytras, E.; Samios, S. Priority pollutants and other micropollutants removal in an MBR-RO wastewater treatment system. Desalin. Water Treat. 2018, 127, 121–131. [Google Scholar] [CrossRef]
- Norton-Brandão, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of used urban waters for irrigation purposes—A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Le-Minh, N.; Coleman, H.M.; Khan, S.J.; Van Luer, Y.; Trang, T.T.T.; Watkins, G.; Stuetz, R.M. The application of membrane bioreactors as decentralised systems for removal of endocrine disrupting chemicals and pharmaceuticals. Water Sci. Technol. 2010, 61, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Arévalo, J.; Ruiz, L.; Pérez, J.; Moreno, B.; Gómez, M. Removal performance of heavy metals in MBR systems and their influence in water reuse. Water Sci. Technol. 2013, 67, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Cases, V.; Alonso, V.; Argandoña, V.; Rodriguez, M.; Prats, D. Endocrine disrupting compounds: A comparison of removal between conventional activated sludge and membrane bioreactors. Desalination 2011, 272, 240–245. [Google Scholar] [CrossRef]
- Dialynas, E.; Diamadopoulos, E. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination 2009, 238, 302–311. [Google Scholar] [CrossRef]
- Jabornig, S. Overview and feasibility of advanced grey water treatment systems for single households. Urban Water J. 2014, 11, 361–369. [Google Scholar] [CrossRef]
- Liakopoulou, A.; Makropoulos, C.; Nikolopoulos, D.; Monokrousou, K.; Karakatsanis, G. An urban water simulation model for the design, testing and economic viability assessment of distributed water management systems for a circular economy. Environ. Sci. Proc. 2020, 2, 2014. [Google Scholar] [CrossRef]
- Dessin-Project. Available online: https://dessin-project.eu/ (accessed on 27 September 2021).
- Tsoukalas, I.; Kossieris, P.; Makropoulos, C. Simulation of non-gaussian correlated random variables, stochastic processes and random fields: Introducing the anysim r-package for environmental applications and beyond. Water 2020, 12, 1645. [Google Scholar] [CrossRef]
Manufacturer | KOCH |
---|---|
Membrane type | Hollow Fiber |
Membrane model | PSH 41 |
Pore size | 0,03 μm |
Membrane surface | (2 × 41 m2) |
Material | Proprietary PVDF |
Specific Air Demand based on membrane area (SADm) | 0.36 m3 air/m2 membrane area/h |
Manufacturer | S.I.T.A. Srl (Societa’ Italiana Trattamento Acque) |
---|---|
Model | 440 LCD RM model |
Material | AISI 316L |
Max Flow rate | 60 L/min |
No. of UV-C lamps | 1 |
Life of lamps (around) | 9000 h |
UV-C Dose | >300 J/m2 |
Working pressure (max.) | 9 bar |
Parameters | PHASE 1 Start Up | PHASE 2 Steady State Conditions |
---|---|---|
Days of operation | 40 | 41–140 |
Operating temperature | 18–23 | 18–25 |
Q (L·d−1) | 25 | 25 |
HRT (d) | 2 | 1 |
SRT (d) | ∞ | 20 |
Flux (L/m2 h) | 1.6 ± 0.2 | 3.3 ± 0.4 |
OLR (KgCOD/m3/d) | 0.225 ± 0.03 | 0.45 ± 0.05 |
Waste Activated Sludge (L·d−1) | - | 1.6 |
Parameters | Influent 1 | Effluent after UV Disinfection | Legislation Limits 2 |
---|---|---|---|
TSS | 253 ± 97 3 | ≤2 for 80% of samples | ≤2 for 80% of samples 5 ≤10 for 80% of samples 4 |
BOD5 | 216 ± 64 3 | 9 (average) 9.6 for 80% of samples | ≤10 for 80% of samples 4,5 |
CODt | 695 ± 97 3 | 34 ± 5 3 | |
TN | 81 (average) | 18 (average) | ≤15 4,5 |
NH4-N | 5 ± 3 3 | 0.25 ± 0.3 3 | ≤2 4,5 |
TP | 10 ± 1.4 3 | 5.9 ± 1 3 | - |
Turbidity | - | 2 (median) | ≤2 (median) 4,5 |
Conductivity | 1109 ± 75 3 | 1067 ± 170 3 | - |
pH | 7.1 ± 0.1 3 | 7.5 ± 0.3 3 | - |
TC | >10 6 | 2 for 80% of samples 9 for 95% of samples | ≤2 for 80% of samples 5 ≤20 for 95% of samples 5 |
FC | >10 6 | ≤3 | - |
EC | >10 6 | ≤3 for 80% of samples ≤3 for 95% of samples | ≤5 for 80% of samples 4 ≤50 for 95% of samples 4 |
Parameters | MBR Effluent | After UV Disinfection |
---|---|---|
TC | 10,525 ± 2874 | 2 for 80% of samples 9 for 95% of samples |
FC | 21 ± 18 | ≤3 |
EC | 3.75 ± 0.5 | ≤3 for 80% of samples ≤3 for 95% of samples |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plevri, A.; Monokrousou, K.; Makropoulos, C.; Lioumis, C.; Tazes, N.; Lytras, E.; Samios, S.; Katsouras, G.; Tsalas, N. Sewer Mining as a Distributed Intervention for Water-Energy-Materials in the Circular Economy Suitable for Dense Urban Environments: A Real World Demonstration in the City of Athens. Water 2021, 13, 2764. https://doi.org/10.3390/w13192764
Plevri A, Monokrousou K, Makropoulos C, Lioumis C, Tazes N, Lytras E, Samios S, Katsouras G, Tsalas N. Sewer Mining as a Distributed Intervention for Water-Energy-Materials in the Circular Economy Suitable for Dense Urban Environments: A Real World Demonstration in the City of Athens. Water. 2021; 13(19):2764. https://doi.org/10.3390/w13192764
Chicago/Turabian StylePlevri, Argyro, Klio Monokrousou, Christos Makropoulos, Christos Lioumis, Nikolaos Tazes, Efthymios Lytras, Stylianos Samios, Georgios Katsouras, and Nikolaos Tsalas. 2021. "Sewer Mining as a Distributed Intervention for Water-Energy-Materials in the Circular Economy Suitable for Dense Urban Environments: A Real World Demonstration in the City of Athens" Water 13, no. 19: 2764. https://doi.org/10.3390/w13192764