Research on Biological Fluidized Bed System Treatment Performance and Nitrogen Removal Process for Seafood Processing Wastewater with Different Operation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Fluidized Bed Setup
2.2. Operation of Biological Fluidized Bed System
2.3. Analytical Methods
2.4. Nitrification Activity Determination Method
2.5. Denitrification Activity Determination Method
3. Results
3.1. Effect of Different Sludge Concentrations on Biological Fluidized Bed System Treatment Performance
3.1.1. Effect of Sludge Concentration on Phosphorus Removal Performance
3.1.2. Effect of Sludge Concentration on Ammonia Nitrogen Removal Performance
3.1.3. Variation of Nitrate Nitrogen and Nitrite Nitrogen Concentration
3.1.4. Variation of Nitrification and Denitrification Activity
3.2. Effect of Different Hydraulic Retention Times on Biological Fluidized Bed System Treatment Performance
3.2.1. Effect of Hydraulic Retention Time on Phosphorus Removal Performance
3.2.2. Effect of Hydraulic Retention Time on Ammonia Nitrogen Removal Performance
3.2.3. Variation of Nitrate Nitrogen and Nitrite Nitrogen Concentration
3.2.4. Variation of Nitrification and Denitrification Activity
3.3. Effect of Different Bio-Carriers on Biological Fluidized Bed System Treatment Performance
3.3.1. Effect of Different Bio-Carriers on Phosphate Removal Performance
3.3.2. Effect of Different Bio-Carriers on Ammonia Nitrogen Treatment Performance
3.3.3. Variation of Nitrite Nitrogen and Nitrate Nitrogen Concentration
3.3.4. Variation of Nitrification and Denitrification Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayashree, C.; Tamilarasan, K.; Rajkumar, M.; Arulazhagan, P.; Yogalakshmi, K.; Srikanth, M.; Banu, J.R. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. J. Environ. Manag. 2016, 180, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.T.H.; Shahsavari, E.; Bott, N.J.; Ball, A.S. The application of Marinobacter hydrocarbonoclasticus as a bioaugmentation agent for the enhanced treatment of non-sterile fish wastewater. J. Environ. Manag. 2021, 291, 112658. [Google Scholar] [CrossRef]
- Show, K.Y. 28—Seafood wastewater treatment. In Handbook of Water and Energy Management in Food Processing; Klemeš, J., Smith, R., Kim, J.K., Eds.; Woodhead Publishing: Sawston, UK, 2008; pp. 776–801. [Google Scholar]
- Venugopal, V.; Sasidharan, A. Seafood industry effluents: Environmental hazards, treatment and resource recovery. J. Environ. Chem. Eng. 2021, 9, 104758. [Google Scholar] [CrossRef]
- Anh, H.T.H.; Shahsavari, E.; Bott, N.J.; Ball, A.S. Bioaugmentation of seafood processing wastewater enhances the removal of inorganic nitrogen and chemical oxygen demand. Aquaculture 2021, 542, 736818. [Google Scholar] [CrossRef]
- Jamieson, B.L.; Gagnon, G.A.; Gonçalves, A.A. Physicochemical characterization of Atlantic Canadian seafood processing plant effluent. Mar. Pollut. Bull. 2017, 116, 137–142. [Google Scholar] [CrossRef]
- Sohsalam, P.; Englande, A.J.; Sirianuntapiboon, S. Seafood wastewater treatment in constructed wetland: Tropical case. Bioresour. Technol. 2008, 99, 1218–1224. [Google Scholar] [CrossRef]
- Jamal, M.T.; Pugazhendi, A.; Jeyakumar, R.B. Application of halophiles in air cathode MFC for seafood industrial wastewater treatment and energy production under high saline condition. Environ. Technol. Innov. 2020, 20, 101119. [Google Scholar] [CrossRef]
- Sridang, P.; Pottier, A.; Wisniewski, C.; Grasmick, A. Performance and microbial surveying in submerged membrane bioreactor for seafood processing wastewater treatment. J. Membr. Sci. 2008, 317, 43–49. [Google Scholar] [CrossRef]
- Sridang, P.C.; Kaiman, J.; Pottier, A.; Wisniewski, C. Benefits of MBR in seafood wastewater treatment and water reuse: Study case in Southern part of Thailand. Desalination 2006, 200, 712–714. [Google Scholar] [CrossRef]
- Zulkipli, M.A.; Bakar, J.A.; Bakar, M.; Mohamed, R.; Al-Gheethi, A. Optimization of Fixed-Bed Sequencing Bio-Reactors Using Jute Fibre for Seafood Processing Wastewater Treatment. Int. J. Integr. Eng. 2021, 13, 321–328. [Google Scholar]
- Li, W.; Liu, J.; Zhen, Y.; Lin, M.; Sui, X.; Zhao, W.; Bing, X.; Lin, J.; Zhai, L. Simultaneous removal of nitrite and organics in a biofilm-enhanced high-salt wastewater treatment system via mixotrophic denitrification coupled with sulfate reduction. J. Water Process. Eng. 2021, 40, 101976. [Google Scholar] [CrossRef]
- Rovirosa, N.; Sánchez, E.; Cruz, M.; Veiga, M.C.; Borja, R. Coliform concentration reduction and related performance evaluation of a down-flow anaerobic fixed bed reactor treating low-strength saline wastewater. Bioresour. Technol. 2004, 94, 119–127. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Guo, H.; Kong, X.; Lan, L.; Xu, H.; Zhu, S.; Ye, Z. Start-up evaluations and biocarriers transfer from a trickling filter to a moving bed bioreactor for synthetic mariculture wastewater treatment. Chemosphere 2019, 218, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Salmanikhas, N.; Tizghadam, M.; Mehrabadi, A.R. Treatment of saline municipal wastewater using hybrid growth system. J. Biol. Eng. 2016, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Li, J.; Yu, Y.; Xu, R.; Wu, Z. Biofilm characteristics in natural ventilation trickling filters (NVTFs) for municipal wastewater treatment: Comparison of three kinds of biofilm carriers. Biochem. Eng. J. 2016, 106, 87–96. [Google Scholar] [CrossRef]
- Johir, M.; Shanmuganathan, S.; Vigneswaran, S.; Kandasamy, J. Performance of submerged membrane bioreactor (SMBR) with and without the addition of the different particle sizes of GAC as suspended medium. Bioresour. Technol. 2013, 141, 13–18. [Google Scholar] [CrossRef]
- Al-Amshawee, S.; Yunus, M.Y.B.M.; Lynam, J.G.; Lee, W.H.; Dai, F.; Dakhil, I.H. Roughness and wettability of biofilm carriers: A systematic review. Environ. Technol. Innov. 2021, 21, 101233. [Google Scholar] [CrossRef]
- Klimenko, N.A.; Savchina, L.A.; Kozyatnik, I.P.; Goncharuk, V.V.; Samsoni-Todorov, A.O. The effect of preliminary ozonization on the bioregeneration of activated carbon during its long-term service. J. Water Chem. Technol. 2009, 31, 220–226. [Google Scholar] [CrossRef]
- Goncharuk, V.V.; Kozyatnik, I.P.; Klimenko, N.A.; Savchina, L.A. Natural bioregeneration of activated carbons in filters for add-on treatment of drinking water during their continuous operation. J. Water Chem. Technol. 2007, 29, 300–306. [Google Scholar] [CrossRef]
- CEPB. Standard Methods for Examination of Water and Wastewater, 4th ed.; Chinese Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Dorofeev, A.G.; Nikolaev, Y.A.; Mardanov, A.V.; Pimenov, N.V. Role of Phosphate-Accumulating Bacteria in Biological Phosphorus Removal from Wastewater. Appl. Biochem. Microbiol. 2020, 56, 1–14. [Google Scholar] [CrossRef]
- Barbosa, R.; Sleutels, T.; Verstraete, W.; Boon, N. Hydrogen oxidizing bacteria are capable of removing orthophosphate to ultra-low concentrations in a fed batch reactor configuration. Bioresour. Technol. 2020, 311, 123494. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Yang, F.; Zhou, F.; Xue, Y. Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater. Bioresour. Technol. 2009, 100, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luo, G.; Li, J.; Chen, S.-Y.; Li, Y.; Li, W.-T.; Li, A.-M. Response of performance and ammonia oxidizing bacteria community to high salinity stress in membrane bioreactor with elevated ammonia loading. Bioresour. Technol. 2016, 216, 714–721. [Google Scholar] [CrossRef]
- Jeong, D.; Cho, K.; Lee, C.-H.; Lee, S.; Bae, H. Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor. Process. Biochem. 2018, 73, 132–141. [Google Scholar] [CrossRef]
- Moussa, M.; Sumanasekera, D.; Ibrahim, S.; Lubberding, H.; Hooijmans, C.; Gijzen, H.; van Loosdrecht, M. Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers. Water Res. 2006, 40, 1377–1388. [Google Scholar] [CrossRef]
- Xu, S.; Wu, D.; Hu, Z. Impact of hydraulic retention time on organic and nutrient removal in a membrane coupled sequencing batch reactor. Water Res. 2014, 55, 12–20. [Google Scholar] [CrossRef]
- Bock, E.; Koops, H.P.; Harms, H. Cell biology of nitrifying bacteria. In Nitrification; Prosser, J.I., Ed.; IRL: Oxford, UK, 1986; pp. 17–38. [Google Scholar]
- Estrada-Arriaga, E.B.; Mijaylova, P.N. Influence of operational parameters (sludge retention time and hydraulic residence time) on the removal of estrogens by membrane bioreactor. Environ. Sci. Pollut. Res. 2011, 18, 1121–1128. [Google Scholar] [CrossRef]
- Feng, Z.J.; Wu, M.; Sun, M.X.; Liu, H.Y.; Zhang, Y.Z.; Dai, J. The effects of different carriers on removal performance and membrane fouling by HMBR in treating sewage with low carbon-to-nitrogen ratio. Process. Saf. Environ. Prot. 2016, 102, 768–776. [Google Scholar] [CrossRef]
- Jurecska, L.; Barkács, K.; Kiss, É.; Gyulai, G.; Felföldi, T.; Törő, B.; Kovács, R.; Záray, G. Intensification of wastewater treatment with polymer fiber-based biofilm carriers. Microchem. J. 2013, 107, 108–114. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, D.; Huang, W.; Yang, Y.; Ji, M.; Nghiem, L.D.; Trinh, Q.T.; Tran, N.H. Insights into biofilm carriers for biological wastewater treatment processes: Current state-of-the-art, challenges, and opportunities. Bioresour. Technol. 2019, 288, 121619. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Chung, J.S. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers. Process. Biochem. 2006, 41, 701–707. [Google Scholar] [CrossRef]
Sludge Concentraion (mg/L) | Ammonia Nitrogen Oxidation Activity (mg N/g MLSS h) | Nitrite Nitrogen Oxidation Activity (mg N/g MLSS h) | Nitrite Reduction Activity (mg N/g MLSS h) | Nitrate Reduction Activity (mg N/g MLSS h) |
---|---|---|---|---|
4000 | 8.1 | 2.9 | 5.2 | 2.4 |
8000 | 10.5 | 4.4 | 7.6 | 3.6 |
HRT (h) | Ammonia Nitrogen Oxidation Activity (mg N/g MLSS h) | Nitrite Nitrogen Oxidation Activity (mg N/g MLSS h) | Nitrite Reduction Activity (mg N/g MLSS h) | Nitrate Reduction Activity (mg N/g MLSS h) |
---|---|---|---|---|
20 | 10.5 | 4.4 | 7.6 | 3.6 |
10 | 9.5 | 4.0 | 4.3 | 2.6 |
5 | 4.5 | 2.5 | 3.8 | 1.2 |
Bio-Carrier | Ammonia Nitrogen Oxidation Activity (mg N/g MLSS h) | Nitrite Nitrogen Oxidation Activity (mg N/g MLSS h) | Nitrite Reduction Activity (mg N/g MLSS h) | Nitrate Reduction Activity (mg N/g MLSS h) |
---|---|---|---|---|
K3 | 10.5 | 4.4 | 7.6 | 3.6 |
K1 | 9.6 | 4.3 | 5.3 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; You, H.; Sun, W.; Guo, Z.; Mei, J.; Hou, X.; Liang, Z.; Li, Z. Research on Biological Fluidized Bed System Treatment Performance and Nitrogen Removal Process for Seafood Processing Wastewater with Different Operation Conditions. Water 2021, 13, 2630. https://doi.org/10.3390/w13192630
Ding Y, You H, Sun W, Guo Z, Mei J, Hou X, Liang Z, Li Z. Research on Biological Fluidized Bed System Treatment Performance and Nitrogen Removal Process for Seafood Processing Wastewater with Different Operation Conditions. Water. 2021; 13(19):2630. https://doi.org/10.3390/w13192630
Chicago/Turabian StyleDing, Yi, Hong You, Wei Sun, Zhansheng Guo, Junxue Mei, Xuguang Hou, Zhenlin Liang, and Zhipeng Li. 2021. "Research on Biological Fluidized Bed System Treatment Performance and Nitrogen Removal Process for Seafood Processing Wastewater with Different Operation Conditions" Water 13, no. 19: 2630. https://doi.org/10.3390/w13192630
APA StyleDing, Y., You, H., Sun, W., Guo, Z., Mei, J., Hou, X., Liang, Z., & Li, Z. (2021). Research on Biological Fluidized Bed System Treatment Performance and Nitrogen Removal Process for Seafood Processing Wastewater with Different Operation Conditions. Water, 13(19), 2630. https://doi.org/10.3390/w13192630