Adapting Water Management to Climate Change in the Murray–Darling Basin, Australia
Abstract
:1. Introduction
2. The Murray–Darling Basin
3. Climate Change and Water Availability in the Basin
3.1. Droughts and Climate Variability
3.2. Projections of Streamflow under Climate Change
4. Evaluating Current Management as Adaptations to Climate Change
4.1. Uneven Sharing Arrangements
4.2. Uncertainties in Water Balance
4.3. Limitations of the Historical Record
4.4. Assessing Vulnerabilities to Climate Change
4.5. Uncertainty over Climate Change
- No-regrets decisions that yield benefits regardless of the extent of climate change, such as through improved water use efficiency in viable irrigation areas;
- Reversible and flexible options, such as operational plans for environmental watering;
- Buying safety margins for the future, such as water conveyance improvements to cope with expected shifts in water use downstream;
- Promoting self-adaptation, such as water demand reduction in irrigation crops through selective breeding;
- Reducing decision lifetimes, such as shorter life or climate-resilient supply infrastructure options, rather than new dams that may fail to perform in the face of long-term drying.
4.6. Ten-Year Planning Horizon
5. Conclusions
- Evaluate Basin Plan outcomes to 2026, and how these compare to expectations and assumptions made in the 2012 Plan. Have climate changes or other drivers contributed to any mismatch between observed and expected responses between 2012 and 2026?;
- Explicitly account for uncertainties in Basin water balance so that they are not borne disproportionately by environmental water;
- Use multiple stochastic climate scenarios that consider possible climate variability and climate change for the next 50 years to provide a better test than the historical sequence of flows;
- Combine a few scenarios of future climate with other major changes in factors such as population, technology, and economics in an integrated system analysis. Climate combines with hydrology, ecology, farm production, demography, markets, and communities to influence outcomes;
- Use conservation planning principles to prioritise which environmental assets to protect;
- Ensure that the objectives of the Plan are specific and measurable, and evaluate their vulnerability to future changes. Require risk management actions to mitigate vulnerabilities;
- Devise and evaluate options for adapting to future risks, setting out potential decision points for the future beyond the 10-year horizon;
- Be locally specific in assessing impacts and vulnerabilities, and support local communities to express their values and priorities for adaptation;
- Use the longer term perspective of 50 years to identify actions that should be taken over the next 10-year iteration of the Plan to improve long-term adaptability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez Cisneros, B.E.; Oki, T.; Arnell, N.W.; Benito, G.; Cogley, J.G.; Döll, P.; Jiang, T.; Mwakalila, S.S. Freshwater resources In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 229–269. [Google Scholar]
- UNESCO. UN-Water, United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Jeffrey, P.; Isendahl, N.; Brugnach, M. Maturing the New Water Management Paradigm: Progressing from Aspiration to Practice. Water Resour. Manag. 2010, 25, 837–856. [Google Scholar] [CrossRef]
- Huntjens, P.; Lebel, L.; Pahl-Wostl, C.; Camkin, J.; Schulze, R.; Kranz, N. Institutional design propositions for the governance of adaptation to climate change in the water sector. Glob. Environ. Chang. 2012, 22, 67–81. [Google Scholar] [CrossRef]
- Allan, C.; Xia, J.; Pahl-Wostl, C. Climate change and water security: Challenges for adaptive water management. Curr. Opin. Environ. Sustain. 2013, 5, 625–632. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.; Kundzewicz, Z.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity Is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Doolan, J. The Australian Water Reform Journey; The Australian Water Partnership and eWater Ltd.: Canberra, Australia, 2016. [Google Scholar]
- Hart, B.T.; Alexandra, J.; Bond, N.R.; Byron, N.; Marsh, R.; Pollino, C.A.; Stewardson, M.J. The way forward: Continuing policy and management reforms in the Murray-Darling Basin. In Murray-Darling Basin: Its Future Management; Hart, B.T., Bond, N.R., Byron, N., Pollino, C.A., Stewardson, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 389–429. [Google Scholar]
- Neave, I.; McLeod, A.; Raisin, G.; Swirepik, J. Managing water in the Murray-Darling Basin under a variable and changing climate. Water 2015, 42, 102–107. [Google Scholar]
- MDBA. Climate Change and the Murray–Darling Basin Plan; Murray‒Darling Basin Authority: Canberra, Australia, 2019. [Google Scholar]
- Slatyer, A. Adaptation and policy responses to climate change impacts in the Murray–Darling Basin. In Murray-Darling Basin: Its Future Management; Hart, B.T., Bond, N.R., Byron, N., Pollino, C.A., Stewardson, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 275–286. [Google Scholar]
- Grafton, R.Q.; Pittock, J.; Williams, J.; Jiang, Q.; Possingham, H.; Quiggin, J. Water Planning and Hydro-Climatic Change in the Murray-Darling Basin, Australia. Ambio 2014, 43, 1082–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittock, J.; Williams, J.; Grafton, R.Q. The Murray-Darling Basin plan fails to deal adequately with climate change. Water 2015, 43, 26–30. [Google Scholar]
- Carmody, E. Analysis: Are Our Water Laws Climate Ready? Environmental Defenders Office: Sydney, Australia, 2019; Available online: https://www.edo.org.au/2019/12/19/are-water-laws-climate-ready/ (accessed on 12 July 2021).
- Walker, G.; Crosbie, R.; Chiew, F.; Peeters, L.; Evans, R. Groundwater impacts and management under a drying climate in southern Australia. Water. in press.
- Hart, B.T. The Australian Murray-Darling Basin Plan: Factors leading to its successful development. Ecohydrol. Hydrobiol. 2016, 16, 229–241. [Google Scholar] [CrossRef]
- Horne, J. The politics of water reform and environmental sustainability in the Murray–Darling Basin. Water Int. 2017, 42, 1000–1021. [Google Scholar] [CrossRef]
- Dyson, M. Current water resources policy and planning in the Murray–Darling Basin. In Murray-Darling Basin: Its Future Management; Hart, B.T., Bond, N.R., Byron, N., Pollino, C.A., Stewardson, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 163–202. [Google Scholar]
- Chiew, F.H.S.; McMahon, T.A. Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol. Sci. J. 2002, 47, 505–522. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; McMahon, T.A.; Finlayson, B.L. Continental differences in the variability of annual runoff—Update and reassess-ment. J. Hydrol. 2004, 295, 185–197. [Google Scholar] [CrossRef]
- Young, W.J.; Chiew, F.H.S. Climate change in the Murray-Darling Basin: Implications for water use and environmental conse-quences. In Water Resources Planning and Management: Challenges and Solutions; Grafton, R.Q., Hussey, K., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 439–459. [Google Scholar]
- Van Dijk, A.I.J.M.; Beck, H.E.; Crosbie, R.; De Jeu, R.A.M.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N. The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- Vertessy, R.V.; Barma, D.; Baumgartner, L.; Mitrovic, S.; Sheldon, F.; Bond, N. Final Report of the Independent Assessment of the 2018–2019 Fish Deaths in the Lower Darling; Independent Panel for the Australian Government: Canberra, Australia, 2019. [Google Scholar]
- Whetton, P.; Chiew, F. Climate change impacts in the Murray-Darling Basin. In Murray-Darling Basin: Its Future Management; Hart, B.T., Bond, N.R., Byron, N., Pollino, C.A., Stewardson, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 253–274. [Google Scholar]
- Potter, N.J.; Chiew, F.H.S. An investigation into changes in climate characteristics causing the recent very low runoff in the southern Murray-Darling Basin using rainfall-runoff models. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- DELWP; BoM; CSIRO; Uni. Melbourne. Victoria’s Water in a Changing Climate; Department of Environment, Land, Water and Planning: Melbourne, Vic, Australia, 2020; Available online: VICWACl_VictoriasWaterInAChangingClimate_FINAL.pdf (accessed on 12 July 2021).
- Chiew, F.H.S. Estimation of rainfall elasticity of streamflow in Australia. Hydrol. Sci. J. 2006, 51, 613–625. [Google Scholar] [CrossRef]
- Timbal, B.; Hendon, H. The role of tropical modes of variability in the current rainfall deficit across the Murray-Darling Basin. Water Resour. Res 2011, 47, W00G09. [Google Scholar] [CrossRef]
- Post, D.A.; Timbal, B.; Chiew, F.H.S.; Hendon, H.H.; Nguyen, H.; Moran, R. Decrease in southeastern Australian water avail-ability linked to ongoing Hadley cell expansion. Earth’s Future 2014, 2, 231–238. [Google Scholar] [CrossRef]
- Rauniyar, S.P.; Power, S.B. The Impact of Anthropogenic Forcing and Natural Processes on Past, Present, and Future Rainfall over Victoria, Australia. J. Clim. 2020, 33, 8087–8106. [Google Scholar] [CrossRef]
- Potter, N.; Chiew, F.; Frost, A. An assessment of the severity of recent reductions in rainfall and runoff in the Murray–Darling Basin. J. Hydrol. 2010, 381, 52–64. [Google Scholar] [CrossRef]
- Gallant, A.J.E.; Gergis, J. An experimental streamflow reconstruction for the River Murray, Australia, 1783–1988. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Flack, A.L.; Kiem, A.S.; Vance, T.R.; Tozer, C.R.; Roberts, J.L. Comparison of published palaeoclimate records suitable for re-constructing annual to sub-decadal hydroclimatic variability in eastern Australia: Implications for water resource management and planning. Hydrol. Earth Syst. Sci. 2020, 24, 5699–5712. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Potter, N.; Vaze, J.; Petheram, C.; Zhang, L.; Teng, J.; Post, D.A. Observed hydrologic non-stationarity in far south-eastern Australia: Implications for modelling and prediction. Stoch. Environ. Res. Risk Assess. 2013, 28, 3–15. [Google Scholar] [CrossRef]
- Saft, M.; Peel, M.C.; Western, A.W.; Zhang, L. Predicting shifts in rainfall-runoff response during multiyear drought: Roles of dry period and catchment characteristics. Water Resour. Res. 2016, 52, 9290–9305. [Google Scholar] [CrossRef]
- Hughes, J.D.; Petrone, K.C.; Silberstein, R.P. Drought, groundwater storage and streamflow decline in southwestern Australia. Geophys. Res. Lett. 2012, 39, L03408. [Google Scholar] [CrossRef]
- Peterson, T.J.; Saft, M.; Peel, M.C.; John, A. Watersheds may not recover from drought. Science 2021, 372, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Brookhouse, M.T.; Farquhar, G.D.; Roderick, M.L. The impact of bushfires on water yield from south-east Australia’s ash forests. Water Resour. Res. 2013, 49, 4493–4505. [Google Scholar] [CrossRef] [Green Version]
- Fowler, K.; Morden, R.; Lowe, L.; Nathan, R. Advances in assessing the impact of hillside farm dams on streamflow. Australas. J. Water Resour. 2015, 19, 96–108. [Google Scholar] [CrossRef]
- Ukkola, A.M.; Prentice, I.C.; Keenan, T.F.; van Dijk, A.I.J.M.; Viney, N.R.; Myneni, R.B.; Bi, J. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Chang. 2016, 6, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhang, L.; Wang, Y.; Canadell, J.G.; Chiew, F.H.S.; Beringer, J.; Li, L.; Miralles, D.G.; Piao, S.; Zhang, Y. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Chiew, F.; Potter, N.; Kirono, D. Projections of water futures for Australia: An update. In Proceedings of the MODSIM, Canberra, Australia, 1–6 December 2019. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Teng, J.; Vaze, J.; Post, D.A.; Perraud, J.M.; Kirono, D.G.C.; Viney, N. Estimating climate change impact on runoff across south-east Australia: Method, results and implications of modelling method. Water Resour. Res. 2009, 45, W10414. [Google Scholar] [CrossRef]
- Kirono, D.G.; Round, V.; Heady, C.; Chiew, F.H.; Osbrough, S. Drought projections for Australia: Updated results and analysis of model simulations. Weather. Clim. Extremes 2020, 30, 100280. [Google Scholar] [CrossRef]
- Grose, M.R.; Narset, S.; Delage, F.P.; Dowdy, R.J.; Bador, M.; Boschat, G.; Chung, C.; Kajtar, J.B.; Rauniyar, S.; Freund M., B.; et al. Insights from CMIP6 for Australia’s future climate. Earth’s Future 2020, 8, e2019EF001469. [Google Scholar] [CrossRef] [Green Version]
- Grose, M.R.; Syktus, J.; Thatcher, M.; Evans, J.P.; Ji, F.; Rafter, T.; Remenyi, T. The role of topography on projected rainfall change in mid-latitude mountain regions. Clim. Dyn. 2019, 53, 3675–3690. [Google Scholar] [CrossRef]
- Potter, N.J.; Chiew, F.H.S.; Charles, S.P.; Fu, G.; Zheng, H.; Zhang, L. Bias in downscaled rainfall characteristics. Hydrol. Earth Syst. Sci. 2020, 24, 2963–2979. [Google Scholar] [CrossRef]
- Charles, S.P.; Chiew, F.H.S.; Potter, N.J.; Zheng, H.; Fu, G.; Zhang, L. Impact of downscaled rainfall biases on projected runoff changes. Hydrol. Earth Syst. Sci. 2020, 24, 2981–2997. [Google Scholar] [CrossRef]
- Chiew, F.H.S.; Zheng, H.; Potter, N.J.; Ekstrom, M.; Grose, M.R.; Kirono, D.G.C.; Zhang, L.; Vaze, J. Future runoff projections for Australia and science challenges in producing next generation projections. In Proceedings of the 22nd International Conference on Modeling and Simulation, Hobart, Australia, 3-8 December 2017; pp. 1745–1751. Available online: https://www.mssanz.org.au/modsim2017/L16/chiew.pdf (accessed on 5 August 2021).
- Ekström, M.; Grose, M.; Heady, C.; Turner, S.W.D.; Teng, J. The method of producing climate change datasets impacts the resulting policy guidance and chance of mal-adaptation. Clim. Serv. 2016, 4, 13–29. [Google Scholar] [CrossRef] [Green Version]
- MDBA Water Resource Plans. Available online: https://www.mdba.gov.au/basin-plan-roll-out/water-resource-plans (accessed on 23 June 2021).
- CSIRO Water. Availability in the Murray-Darling Basin. In A Report from CSIRO to the Australian Government Commonwealth Scientific Industrial and Research Organisation; CSIRO Water: Canberra, Australia, 2008; Available online: https://publications.csiro.au/rpr/download?pid=legacy:530&dsid=DS1 (accessed on 12 July 2021).
- CSIRO Water. Availability in the Murray. In A Report from CSIRO to the Australian Government. Commonwealth Scientific Industrial and Research Organisation; CSIRO Water: Canberra, Australia, 2008; Available online: https://publications.csiro.au/rpr/download?pid=procite:cfc7ab48-acf5-4cff-87aa-f398cfb0287f&dsid=DS1 (accessed on 5 August 2021).
- Commonwealth Environmental Water Office. Commonwealth Environmental Water Holdings by Catchment and Year. Available online: https://www.environment.gov.au/water/cewo/about/water-holdings (accessed on 11 August 2021).
- Van Dijk, A.I.J.M.; Kirby, M.; Paydar, Z.; Podger, G.; Mainuddin, M.; Marvanek, S.; Peña Arancibia, J. Uncertainty in River Modelling across the Murray-Darling Basin. A Report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project; CSIRO: Canberra, Australia, 2008. [Google Scholar]
- Tomkins, K.M. Uncertainty in streamflow rating curves: Methods, controls and consequences. Hydrol. Process. 2012, 28, 464–481. [Google Scholar] [CrossRef]
- Matthews, K. Interim Report: Independent Investigation into NSW Water Management and Compliance; NSW Government: Sydney, Australia, 2017. [Google Scholar]
- Walker, G.; Horne, A.; Wang, Q.; Rendell, R. Assessing the Impact of Irrigation Efficiency Projects on Return Flows in the South-Eastern Murray–Darling Basin, Australia. Water 2021, 13, 1366. [Google Scholar] [CrossRef]
- Walker, B. Murray-Darling Basin Royal Commission Report; South Australian Government: Adelaide, Australia, 2019. [Google Scholar]
- Wentworth Group of Concerned Scientists. Assessment of River Flows in the Murray-Darling Basin: Observed Versus Expected Flows under the Basin Plan 2012–2019; Wentworth Group of Concerned Scientists: Sydney, Australia, 2020; Available online: https://wentworthgroup.org/wp-content/uploads/2020/08/MDB-flows.pdf (accessed on 12 July 2021).
- Davies, A. Former NSW Water Minister Defends Exclusion of Driest Years from Sustainable Water Calculations. The Guardian Australia Edition, Tue 14 July 2020. Available online: https://www.theguardian.com/australia-news/2020/jul/13/former-nsw-water-minister-defends-exclusion-of-driest-years-from-sustainable-water-calculations (accessed on 23 June 2021).
- Cobb, K.M.; Charles, C.D.; Cheng, H.; Edwards, R.L. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 2003, 424, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Abram, N.J.; Wright, N.M.; Ellis, B.; Dixon, B.C.; Wurtzel, J.; England, M.H.; Ummenhofer, C.C.; Philibosian, B.; Cahyarini, S.Y.; Yu, T.-L.; et al. Coupling of Indo-Pacific climate variability over the last millennium. Nature 2020, 579, 385–392. [Google Scholar] [CrossRef]
- BoM; CSIRO. State of the Climate; Commonwealth of Australia: Canberra, Australia, 2020. [Google Scholar]
- Bates, B.C.; Hope, P.; Ryan, B.; Smith, I.; Charles, S. Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Clim. Chang. 2008, 89, 339–354. [Google Scholar] [CrossRef]
- Kirby, M.; Bark, R.; Connor, J.; Qureshi, M.E.; Keyworth, S. Sustainable irrigation: How did irrigated agriculture in Australia’s Murray–Darling Basin adapt in the Millennium Drought? Agric. Water Manag. 2014, 145, 154–162. [Google Scholar] [CrossRef]
- Horne, A.C.; Nathan, R.; Poff, N.L.; Bond, N.R.; Webb, J.A.; Wang, J.; John, A. Modeling Flow-Ecology Responses in the Anthropocene: Challenges for Sustainable Riverine Management. BioScience 2019, 69, 789–799. [Google Scholar] [CrossRef]
- NSW. DPIE Draft Regional Water Strategy; Namoi Strategy; PUB20/313 NSW Department of Planning, Industry and Environment: Sydney, Australia, 2021. Available online: https://www.industry.nsw.gov.au/water/plans-programs/regional-water-strategies/public-exhibition/previously/namoi (accessed on 12 July 2021).
- Qureshi, M.E.; Ahmad, M.D.; Whitten, S.M.; Reeson, A.; Kirby, M. Impact of Climate Variability Including Drought on the Residual Value of Irrigation Water Across the Murray–Darling Basin, Australia. Water Econ. Policy 2018, 4, 1550020. [Google Scholar] [CrossRef]
- Gupta, M.; Hughes, N.; Whittle, L.; Westwood, T. Future Scenarios for the Southern Murray-Darling Basin, Report to the Independent Assessment of Social and Economic Conditions in the Basin; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2020. [Google Scholar] [CrossRef]
- Sefton, R.; Peterson, D.; Woods, R.; Kassebaum, A.; McKenzie, D.; Simpson, B.; Ramsay, M. Independent Assessment of Social and Economic Conditions in the Murray–Darling Basin; Panel for Independent Assessment of Social and Economic Conditions in the Murray–Darling Basin: Melbourne, Australia, 2020. [Google Scholar]
- Kirsch, E.; Colloff, M.J.; Pittock, J. Lacking character? A policy analysis of environmental watering of Ramsar wetlands in the Murray–Darling Basin, Australia. Mar. Freshw. Res. 2021. [Google Scholar] [CrossRef]
- Linke, S.; Hermoso, V.; Januchowski-Hartley, S. Toward process-based conservation prioritizations for freshwater ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 2018, 29, 1149–1160. [Google Scholar] [CrossRef]
- Bino, G.; Kingsford, R.; Porter, J. Prioritizing Wetlands for Waterbirds in a Boom and Bust System: Waterbird Refugia and Breeding in the Murray-Darling Basin. PLoS ONE 2015, 10, e0132682. [Google Scholar] [CrossRef] [Green Version]
- Swirepik, J.L.; Burns, I.C.; Dyer, F.J.; Neave, I.A.; O’Brien, M.G.; Pryde, G.M.; Thompson, R.M. Science informed policy: Establishing environmental water needs for Australia’s largest and most developed river basin. River Res. Appl. 2016, 32, 1153–1165. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Poff, N.L.; Bond, N.R.; Horne, A.; Merritt, D.M.; Reynolds, L.V.; Olden, J.; Ruhi, A.; Lytle, D.A. Prepare river ecosystems for an uncertain future. Nature 2019, 570, 301–303. [Google Scholar] [CrossRef]
- Alexandra, J. The science and politics of climate risk assessment in Australia’s Murray Darling Basin. Environ. Sci. Policy 2020, 112, 17–27. [Google Scholar] [CrossRef]
- Horne, J. The 2012 Murray-Darling Basin Plan—Issues to watch. Int. J. Water Resour. Dev. 2013, 30, 152–163. [Google Scholar] [CrossRef]
- MDBA. The Basin Plan 2020 Evaluation; Murray-Darling Basin Authority: Canberra, Australia, 2020. [Google Scholar]
- Keelty, M. Impact of Lower Inflows on State Shares under the Murray–Darling Basin Agreement; Interim Inspector-General of Murray–Darling Basin Water Resources Commonwealth of Australia: Canberra, Australia, 2020. Available online: https://www.igwc.gov.au/sites/default/files/2020-09/iig_final_report.pdf (accessed on 12 July 2021).
- Productivity Commission. Murray-Darling Basin Plan: Five-Year Assessment; Final Report no. 90; Productivity Commission: Canberra, Australia, 2018. Available online: https://www.pc.gov.au/inquiries/completed/basin-plan/report (accessed on 12 July 2021).
- COAG. Improving Implementation of the Murray-Darling Basin Plan. In Council of Australian Governments Meeting Communique 9 August 2019, Commonwealth of Australia; COAG: Canberra, Australia, 2019. Available online: https://www.pc.gov.au/inquiries/completed/basin-plan/basin-plan-government-response.pdf (accessed on 12 July 2021).
- Smith, M.S.; Horrocks, L.; Harvey, A.; Hamilton, C. Rethinking adaptation for a 4 °C world. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 196–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dovers, S.R.; Hezri, A.A. Institutions and policy processes: The means to the ends of adaptation. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 212–231. [Google Scholar] [CrossRef]
- CSIRO Climate Compass. A Climate Risk Management Framework for Commonwealth Agencies; Commonwealth Scientific and Industrial Research Organisation: Canberra, Australia, 2018. [Google Scholar]
- Siebentritt, M.; Stafford Smith, M. A User’s Guide to Applied Adaptation Pathways Version 1; Seed Consulting Services and CSIRO: Adelaide, Australia, 2016; Available online: http://www.adaptationpathways.net (accessed on 5 December 2020).
- WSAA. Climate Change Adaptation Guidelines; Water Services Association of Australia: Melbourne, Australia, 2016. [Google Scholar]
- Haasnoot, M.; Kwakkel, J.H.; Walker, W.E.; ter Maat, J. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Chang. 2013, 23, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Walker, W.E.; Haasnoot, M.; Kwakkel, J.H. Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty. Sustainability 2013, 5, 955–979. [Google Scholar] [CrossRef] [Green Version]
- Malekpour, S.; Walker, W.E.; de Haan, F.J.; Frantzeskaki, N.; Marchau, V.A. Bridging Decision Making under Deep Uncertainty (DMDU) and Transition Management (TM) to improve strategic planning for sustainable development. Environ. Sci. Policy 2020, 107, 158–167. [Google Scholar] [CrossRef]
- Stewardson, M.J.; Walker, G.; Coleman, M. Hydrology of the Murray-Darling Basin, Murray-Darling Basin, Australia. In Murray-Darling Basin: Its Future Management; Hart, B.T., Bond, N.R., Byron, N., Pollino, C.A., Stewardson, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 47–73. [Google Scholar]
- Gibbs, M.T. Asset anchoring as a constraint to sea level rise adaptation. Ocean Coast. Manag. 2013, 85, 119–123. [Google Scholar] [CrossRef]
- Gibbs, M.T. The two-speed coastal climate adaptation economy in Australia. Ocean Coast. Manag. 2020, 190, 105150. [Google Scholar] [CrossRef]
- Reeder, T.; Ranger, N. How Do You Adapt in an Uncertain World? Lessons from the Thames Estuary 2100 Project; World Resources Report; World Resources Institute: Washington, DC, USA, 2011; Available online: http://climatelondon.org/wp-content/uploads/2019/10/wrr_reeder_and_ranger_uncertainty.pdf (accessed on 25 August 2021).
- Siebentritt, M.; Halsey, N.; Stafford-Smith, M. Regional Climate Change Adaptation Plan for the Eyre Peninsula; Prepared for the Eyre Peninsula Integrated Climate Change Agreement Committee; Seed Consulting Services: Port Lincoln, Australia, 2014. [Google Scholar]
- Marshall, G.R.; Smith, M.S. Natural resources governance for the drylands of the Murray–Darling Basin. Rangel. J. 2010, 32, 267–282. [Google Scholar] [CrossRef]
- Cradock-Henry, N.A.; Blackett, P.; Connolly, J.; Frame, B.; Teixeira, E.; Johnstone, P.; Wreford, A. Principles and process for developing participatory adaptation pathways in the primary industries. Elem. Sci. Anth. 2021, 9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosser, I.P.; Chiew, F.H.S.; Stafford Smith, M. Adapting Water Management to Climate Change in the Murray–Darling Basin, Australia. Water 2021, 13, 2504. https://doi.org/10.3390/w13182504
Prosser IP, Chiew FHS, Stafford Smith M. Adapting Water Management to Climate Change in the Murray–Darling Basin, Australia. Water. 2021; 13(18):2504. https://doi.org/10.3390/w13182504
Chicago/Turabian StyleProsser, Ian P., Francis H. S. Chiew, and Mark Stafford Smith. 2021. "Adapting Water Management to Climate Change in the Murray–Darling Basin, Australia" Water 13, no. 18: 2504. https://doi.org/10.3390/w13182504