# Coastal Boulder Dynamics Inferred from Multi-Temporal Satellite Imagery, Geological and Meteorological Investigations in Southern Apulia, Italy

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Area

## 3. Methods

#### 3.1. Satellite Imagery and Geological Investigations

#### 3.2. Marine Weather Analysis

#### 3.3. Onshore Wave Height Assessment

## 4. Satellite Imagery and Geological Investigations

#### 4.1. Overview

#### 4.2. Punta Prosciutto Headland

#### 4.3. Sant’Isidoro Coast

#### 4.4. Punta Pizzo Headland

#### 4.5. Mancaversa Coast

#### 4.6. Torre Suda Coast

#### 4.7. Capilungo Coast

#### 4.8. Ciardo Coast

#### 4.9. Sant’Emiliano Coast

#### 4.10. Summary

## 5. Marine Weather Conditions

## 6. Results and Discussion

#### 6.1. Inferred Boulders Dynamics

#### 6.2. Causative Storm Identification

#### 6.3. Coastal Hazard Inferences

## 7. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Table A1.**Initial and final geographical coordinates of the displaced boulders at Punta Prosciutto headland; ind., indeterminable.

Initial Position | Final Position | ||||
---|---|---|---|---|---|

Boulder ID | Latitude | Longitude | Latitude | Longitude | TD [m] |

PRa | 40${}^{\circ}$17${}^{\prime}$32.24${}^{\u2033}$ N | 17${}^{\circ}$46${}^{\prime}$00.28${}^{\u2033}$ E | 40${}^{\circ}$17${}^{\prime}$32.49${}^{\u2033}$ N | 17${}^{\circ}$46${}^{\prime}$00.37${}^{\u2033}$ E | 7.7 |

PRb | 40${}^{\circ}$17${}^{\prime}$32.29${}^{\u2033}$ N | 17${}^{\circ}$46${}^{\prime}$00.31${}^{\u2033}$ E | 40${}^{\circ}$17${}^{\prime}$32.38${}^{\u2033}$ N | 17${}^{\circ}$46${}^{\prime}$00.34${}^{\u2033}$ E | 2.8 |

PRc | 40${}^{\circ}$17${}^{\prime}$30.14${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$48.31${}^{\u2033}$ E | 40${}^{\circ}$17${}^{\prime}$30.25${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$47.87${}^{\u2033}$ E | 10.8 |

PRd | 40${}^{\circ}$17${}^{\prime}$30.40${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$46.87${}^{\u2033}$ E | 40${}^{\circ}$17${}^{\prime}$30.52${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$46.78${}^{\u2033}$ E | 3.5 |

PRe | 40${}^{\circ}$17${}^{\prime}$32.47${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$46.60${}^{\u2033}$ E | 40${}^{\circ}$17${}^{\prime}$32.60${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$46.63${}^{\u2033}$ E | 3.8 |

PRf | 40${}^{\circ}$17${}^{\prime}$33.00${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.86${}^{\u2033}$ E | 40${}^{\circ}$17${}^{\prime}$33.51${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$46.13${}^{\u2033}$ E | 16.3 |

PRg | ind. | ind. | 40${}^{\circ}$17${}^{\prime}$33.87${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$46.33${}^{\u2033}$ E | - |

PRh | ind. | ind. | 40${}^{\circ}$17${}^{\prime}$34.28${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$46.09${}^{\u2033}$ E | - |

PRi | 40${}^{\circ}$17${}^{\prime}$34.72${}^{\prime \prime}$ N | 17${}^{\circ}$45${}^{\prime}$45.62${}^{\prime \prime}$ E | 40${}^{\circ}$17${}^{\prime}$34.81${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.71${}^{\u2033}$ E | 3.9 |

PRj | 40${}^{\circ}$17${}^{\prime}$34.72${}^{\prime \prime}$ N | 17${}^{\circ}$45${}^{\prime}$45.62${}^{\prime \prime}$ E | 40${}^{\circ}$17${}^{\prime}$34.83${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.73${}^{\u2033}$ E | 4.8 |

PRk | 40${}^{\circ}$17${}^{\prime}$34.72${}^{\prime \prime}$ N | 17${}^{\circ}$45${}^{\prime}$45.62${}^{\prime \prime}$ E | 40${}^{\circ}$17${}^{\prime}$34.87${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.75${}^{\u2033}$ E | 6.3 |

PRl | 40${}^{\circ}$17${}^{\prime}$34.72${}^{\prime \prime}$ N | 17${}^{\circ}$45${}^{\prime}$45.62${}^{\prime \prime}$ E | 40${}^{\circ}$17${}^{\prime}$34.85${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.69${}^{\u2033}$ E | 4.4 |

PRm | 40${}^{\circ}$17${}^{\prime}$35.13${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.60${}^{\u2033}$ E | 40${}^{\circ}$17${}^{\prime}$35.19${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.69${}^{\u2033}$ E | 2.6 |

PRn | ind. | ind. | 40${}^{\circ}$17${}^{\prime}$35.39${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.64${}^{\u2033}$ E | - |

PRo | ind. | ind. | 40${}^{\circ}$17${}^{\prime}$35.41${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.74${}^{\u2033}$ E | - |

PRp | ind. | ind. | 40${}^{\circ}$17${}^{\prime}$35.35${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.78${}^{\u2033}$ E | - |

PRq | 40${}^{\circ}$17${}^{\prime}$35.48${}^{\prime \prime}$ N | 17${}^{\circ}$45${}^{\prime}$45.38${}^{\prime \prime}$ E | 40${}^{\circ}$17${}^{\prime}$35.77${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.69${}^{\u2033}$ E | 11.7 |

PRr | 40${}^{\circ}$17${}^{\prime}$35.48${}^{\prime \prime}$ N | 17${}^{\circ}$45${}^{\prime}$45.38${}^{\prime \prime}$ E | 40${}^{\circ}$17${}^{\prime}$35.84${}^{\u2033}$ N | 17${}^{\circ}$45${}^{\prime}$45.84${}^{\u2033}$ E | 15.4 |

**Table A2.**Main features of the displaced boulders at Punta Prosciutto headland; Dimensions of the boulder axes a,b,c, initial distances from the cliff edge ${x}_{\mathrm{i}}$, final distances from the cliff edge ${x}_{\mathrm{f}}$. Li, Lithology; C, Calcarenite; L, Limestone; S, Sandstone; Sh, Shape; B, Bladed; P, Prolate, D, Disk; E, Equant; FI, Flatness Index; PTS, Pre Transport Setting; JB, Joint-Bounded, SA, Sub-Aerial; SM, Submerged; MT, Movement Type; ST, saltation; SL, sliding; OV, overturning; and ind., indeterminable.

Boulder ID | a [m] | b [m] | c [m] | ${\mathit{x}}_{\mathbf{i}}$ [m] | ${\mathit{x}}_{\mathbf{f}}$ [m] | Li | Sh | FI | PTS | MT |
---|---|---|---|---|---|---|---|---|---|---|

PRa | 1.3 | 1.0 | 0.4 | 7.2 | 9.8 | C | D | 2.88 | SA | ST |

PRb | 1.9 | 1.2 | 0.8 | 7.7 | 7.9 | C | P | 1.94 | SA | ST |

PRc | 1.5 | 1.4 | 0.5 | 0.3 | 3.4 | C | D | 2.90 | SA | ST,OV |

PRd | 1.9 | 1.3 | 0.6 | 4.7 | 6.8 | C | D | 2.67 | SA | OV |

PRe | 1.9 | 1.4 | 1.3 | 17.5 | 18.6 | C | E | 1.27 | SA | OV |

PRf | 2.0 | 1.2 | 0.7 | 0.9 | 5.1 | C | B | 2.29 | SA | OV |

PRg | 1.8 | 1.1 | 0.4 | ind. | 12.4 | C | B | 3.63 | SA | ind. |

PRh | 1.7 | 1.3 | 0.5 | ind. | 8.8 | C | D | 3.00 | SA | ind. |

PRi | 1.8 | 1.5 | 0.4 | 4.1 | 7.6 | C | D | 4.13 | SA | ST |

PRj | 1.4 | 0.9 | 0.3 | 4.1 | 8.5 | C | B | 3.83 | SA | ST |

PRk | 1.8 | 1.5 | 0.4 | 4.1 | 9.4 | C | D | 4.13 | SA | ST,OV |

PRl | 1.8 | 1.2 | 0.4 | 4.1 | 7.8 | C | D | 3.75 | SA | OV |

PRm | 1.3 | 0.9 | 0.4 | 7.1 | 8.8 | C | D | 2.75 | SA | OV |

PRn | 3.1 | 2.4 | 0.5 | ind. | 8.1 | C | D | 5.50 | SA | ST,OV |

PRo | 1.9 | 1.3 | 0.4 | ind. | 11.1 | C | D | 4.00 | SA | ST,OV |

PRp | 2.2 | 1.5 | 0.6 | ind. | 11.2 | C | D | 3.08 | SA | ST,OV |

PRq | 2.7 | 1.4 | 0.6 | 1.9 | 11.8 | C | B | 3.42 | SA | ST |

PRr | 1.9 | 1.4 | 0.4 | 1.9 | 13.3 | C | D | 4.13 | SA | ST |

**Figure A1.**Torre Sant’Isidoro coast. Below the boulder SIf, its socket was recognized during the field survey (from [10], modified). By the June 2020 satellite image, the other boulder (highlighted in red dashed line) was not identified despite its socket (very evident in the photo). Note that the field survey was made one month after the date of the last GE image.

**Table A3.**Initial and final geographical coordinates of the displaced boulders at the Torre Sant’Isidoro coast; ind., indeterminable.

Initial Position | Final Position | ||||
---|---|---|---|---|---|

Boulder ID | Latitude | Longitude | Latitude | Longitude | TD [m] |

SIc | 40${}^{\circ}$13${}^{\prime}$34.20${}^{\u2033}$ N | 17${}^{\circ}$55${}^{\prime}$17.51${}^{\u2033}$ E | ind. | ind. | - |

SIf | 40${}^{\circ}$13${}^{\prime}$37.03${}^{\u2033}$ N | 17${}^{\circ}$55${}^{\prime}$14.06${}^{\u2033}$ E | 40${}^{\circ}$13${}^{\prime}$37.04${}^{\u2033}$ N | 17${}^{\circ}$55${}^{\prime}$14.07${}^{\u2033}$ E | 0.4 |

SIg | 40${}^{\circ}$13${}^{\prime}$43.82${}^{\u2033}$ N | 17${}^{\circ}$55${}^{\prime}$05.10${}^{\u2033}$ E | 40${}^{\circ}$13${}^{\prime}$43.89${}^{\u2033}$ N | 17${}^{\circ}$55${}^{\prime}$05.12${}^{\u2033}$ E | 2.4 |

**Table A4.**Main features of the displaced boulders at the Torre Sant’Isidoro coast; see the caption of Table A2 for symbols.

Boulder ID | a [m] | b [m] | c [m] | ${\mathit{x}}_{\mathbf{i}}$ [m] | ${\mathit{x}}_{\mathbf{f}}$ [m] | Li | Sh | FI | PTS | MT |
---|---|---|---|---|---|---|---|---|---|---|

SIc | 2.6 | 1.7 | 0.6 | 1.5 | ind. | C | B | 3.58 | SA | SL |

SIf | 2.8 | 2.4 | 0.4 | 12 | 12.5 | C | D | 6.00 | SA | ST |

SIg | 1.7 | 1.5 | 0.5 | 9 | 11.5 | C | D | 3.20 | SA | OV |

**Figure A2.**Punta Pizzo headland: (

**a**) The boulder PIr and its socket taken from the coastline. (

**b**) The same objects of a, taken from inland. (

**c**) The boulder group PIa,b,c,d,e and the initial position (blue dashed line) taken from the coastline. (

**d**) The same objects of c, taken from inland.

**Table A5.**Initial and final geographical coordinates of the displaced boulders at the Punta Pizzo headland; ind., indeterminable.

Initial Position | Final Position | ||||
---|---|---|---|---|---|

Boulder ID | Latitude | Longitude | Latitude | Longitude | TD [m] |

PIa | 39${}^{\circ}$59${}^{\prime}$34.46${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.06${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$34.58${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.10${}^{\u2033}$ E | 3.9 |

PIb | 39${}^{\circ}$59${}^{\prime}$34.46${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.06${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$34.61${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.18${}^{\u2033}$ E | 5.3 |

PIc | 39${}^{\circ}$59${}^{\prime}$34.46${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.06${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$34.63${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.14${}^{\u2033}$ E | 5.6 |

PId | 39${}^{\circ}$59${}^{\prime}$34.46${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.06${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$34.62${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.10${}^{\u2033}$ E | 5.1 |

PIe | 39${}^{\circ}$59${}^{\prime}$34.46${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.06${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$34.60${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$48.06${}^{\u2033}$ E | 4.4 |

PIf | ind. | ind. | 39${}^{\circ}$59${}^{\prime}$35.19${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$47.30${}^{\u2033}$ E | - |

PIg | 39${}^{\circ}$59${}^{\prime}$43.62${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.76${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$43.68${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.67${}^{\u2033}$ E | 2.8 |

PIh | 39${}^{\circ}$59${}^{\prime}$43.50${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.37${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$43.77${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.86${}^{\u2033}$ E | 14.3 |

PIi | ind. | ind. | 39${}^{\circ}$59${}^{\prime}$43.83${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.79${}^{\u2033}$ E | - |

PIj | 39${}^{\circ}$59${}^{\prime}$43.55${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.43${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$43.92${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.88${}^{\u2033}$ E | 15.6 |

PIk | ind. | ind. | 39${}^{\circ}$59${}^{\prime}$43.97${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$42.30${}^{\u2033}$ E | - |

PIl | ind. | ind. | 39${}^{\circ}$59${}^{\prime}$44.25${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.05${}^{\u2033}$ E | - |

PIm | 39${}^{\circ}$59${}^{\prime}$44.70${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.28${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$44.70${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.30${}^{\u2033}$ E | 0.6 |

PIn | 39${}^{\circ}$59${}^{\prime}$44.86${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.39${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$44.86${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$41.41${}^{\u2033}$ E | 0.7 |

PIo | 39${}^{\circ}$59${}^{\prime}$53.26${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$38.24${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$53.29${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$38.25${}^{\u2033}$ E | 0.9 |

PIp | 39${}^{\circ}$59${}^{\prime}$53.25${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$38.15${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$53.33${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$38.21${}^{\u2033}$ E | 2.8 |

PIq | ind. | ind. | 39${}^{\circ}$59${}^{\prime}$53.46${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$38.23${}^{\u2033}$ E | - |

PIr | 39${}^{\circ}$59${}^{\prime}$53.61${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$38.20${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$53.64${}^{\u2033}$ N | 17${}^{\circ}$59${}^{\prime}$38.30${}^{\u2033}$ E | 2.7 |

**Table A6.**Main features of the displaced boulders at the Punta Pizzo headland; see the caption of Table A2 for symbols.

Boulder ID | a [m] | b [m] | c [m] | ${\mathit{x}}_{\mathbf{i}}$ [m] | ${\mathit{x}}_{\mathbf{f}}$ [m] | Li | Sh | FI | PTS | MT |
---|---|---|---|---|---|---|---|---|---|---|

PIa | 1.2 | 0.7 | 0.4 | 8.4 | 10.3 | C | B | 2.38 | SA | SL |

PIb | 1.6 | 1.1 | 0.4 | 8.4 | 12.6 | C | D | 3.38 | SA | SL |

PIc | 1.3 | 1.1 | 0.4 | 8.4 | 12.8 | C | D | 3.00 | SA | SL |

PId | 1.4 | 1.1 | 0.4 | 8.4 | 11.6 | C | D | 3.13 | SA | SL |

PIe | 2.7 | 1.0 | 0.4 | 8.4 | 10.6 | C | D | 6.50 | SA | SL |

PIf | 2.1 | 1.0 | 0.7 | ind. | 10.4 | C | P | 2.11 | SA | ST |

PIg | 2.9 | 1.4 | 0.7 | 11.0 | 9.3 | C | B | 3.07 | SA | OV |

PIh | 3.1 | 2.2 | 0.4 | 1.7 | 15.5 | C | D | 6.63 | SA | ST |

PIi | 1.3 | 0.9 | 0.4 | ind. | 14.9 | C | D | 2.75 | SA | ind. |

PIj | 1.6 | 0.7 | 0.5 | 3.2 | 17.9 | C | P | 2.30 | SA | ind. |

PIk | 1.1 | 0.8 | 0.6 | ind. | 27.6 | C | E | 1.58 | SA | OV |

PIl | 1.6 | 0.7 | 0.3 | ind. | 1.6 | C | B | 3.83 | SM | ind. |

PIm | 2.7 | 1.7 | 0.4 | 10.2 | 11.1 | C | B | 5.50 | SA | SL |

PIn | 2.4 | 1.3 | 0.4 | 14.1 | 14.7 | C | B | 4.63 | SA | SL |

PIo | 1.5 | 0.6 | 0.4 | 4.1 | 4.6 | C | P | 2.63 | SA | SL |

PIp | 2.0 | 1.5 | 0.4 | 2.6 | 4.3 | C | D | 4.38 | SA | OV |

PIq | 1.3 | 0.7 | 0.3 | ind. | 6.6 | C | B | 3.33 | SA | ind. |

PIr | 2.5 | 1.4 | 0.4 | 6.2 | 8.6 | C | B | 4.88 | JB | OV |

**Table A7.**Initial and final geographical coordinates of the displaced boulders at the Mancaversa coast; ind., indeterminable.

Initial Position | Final Position | ||||
---|---|---|---|---|---|

Boulder ID | Latitude | Longitude | Latitude | Longitude | TD [m] |

MAa | 39${}^{\circ}$58${}^{\prime}$20.49${}^{\u2033}$ N | 18${}^{\circ}$0${}^{\prime}$43.70${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$20.64${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$43.72${}^{\u2033}$ E | 4.4 |

MAb | 39${}^{\circ}$58${}^{\prime}$25.26${}^{\u2033}$ N | 18${}^{\circ}$0${}^{\prime}$41.07${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$25.29${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$41.08${}^{\u2033}$ E | 1.1 |

MAc | 39${}^{\circ}$58${}^{\prime}$26.55${}^{\u2033}$ N | 18${}^{\circ}$0${}^{\prime}$38.73${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$26.61${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$38.73${}^{\u2033}$ E | 1.8 |

MAd | ind. | ind. | 39${}^{\circ}$58${}^{\prime}$33.36${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$33.24${}^{\u2033}$ E | - |

MAe | ind. | ind. | 39${}^{\circ}$58${}^{\prime}$33.38${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$33.10${}^{\u2033}$ E | - |

MAf | 39${}^{\circ}$58${}^{\prime}$33.93${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.40${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$34.15${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.63${}^{\u2033}$ E | 8.6 |

MAg | 39${}^{\circ}$58${}^{\prime}$33.93${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.40${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$34.09${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.59${}^{\u2033}$ E | 6.7 |

MAh | 39${}^{\circ}$58${}^{\prime}$33.93${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.40${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$34.10${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.54${}^{\u2033}$ E | 6.0 |

MAi | 39${}^{\circ}$58${}^{\prime}$33.93${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.40${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$34.09${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.52${}^{\u2033}$ E | 5.6 |

MAj | 39${}^{\circ}$58${}^{\prime}$33.93${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.40${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$34.15${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.55${}^{\u2033}$ E | 7.5 |

MAk | 39${}^{\circ}$58${}^{\prime}$33.93${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.40${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$34.14${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.50${}^{\u2033}$ E | 6.8 |

MAl | 39${}^{\circ}$58${}^{\prime}$33.93${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.40${}^{\u2033}$ E | 39${}^{\circ}$58${}^{\prime}$34.12${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$32.48${}^{\u2033}$ E | 6.1 |

MAm | 39${}^{\circ}$59${}^{\prime}$07.40${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$08.71${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$07.43${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$08.73${}^{\u2033}$ E | 1.1 |

MAn | 39${}^{\circ}$59${}^{\prime}$07.40${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$08.71${}^{\u2033}$ E | 39${}^{\circ}$59${}^{\prime}$07.43${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$08.74${}^{\u2033}$ E | 1.3 |

MAo | ind. | ind. | 39${}^{\circ}$59${}^{\prime}$07.57${}^{\u2033}$ N | 18${}^{\circ}$00${}^{\prime}$08.73${}^{\u2033}$ E | - |

**Figure A3.**Mancaversa stretch of coast: (

**a**) The boulder MAa and its initial position (blue dashed line) taken from the coastline. (

**b**) The seven boulder group MAf-l; note that the unaltered rocky surfaces suggest the overturning of the boulders. (

**c**) The sandstone boulder MAc and the neighbour, likely contemporary, rockfall.

**Table A8.**Main features of the displaced boulders at the Mancaversa coast; see the caption of Table A2 for symbols.

Boulder ID | a [m] | b [m] | c [m] | ${\mathit{x}}_{\mathbf{i}}$ [m] | ${\mathit{x}}_{\mathbf{f}}$ [m] | Li | Sh | FI | PTS | MT |
---|---|---|---|---|---|---|---|---|---|---|

MAa | 3.4 | 2.1 | 0.5 | 0.6 | 1.5 | C | B | 5.50 | JB | SL |

MAb | 1.9 | 1.5 | 0.5 | 4.7 | 5.4 | C | D | 3.40 | SA | SL |

MAc | 1.3 | 1.1 | 0.4 | 2.1 | 4.1 | S | D | 3.00 | SA | OV |

MAd | 0.9 | 0.8 | 0.4 | ind. | 11.9 | C | D | 2.13 | SA | ind. |

MAe | 2.3 | 0.8 | 0.5 | ind. | 10.4 | C | B | 3.10 | SA | ind. |

MAf | 1.2 | 0.5 | 0.4 | 5.2 | 8.8 | C | P | 2.13 | SA | ST,OV |

MAg | 1.4 | 0.7 | 0.3 | 5.2 | 4.6 | C | B | 3.50 | SA | ST |

MAh | 1.3 | 0.5 | 0.3 | 5.2 | 5.3 | C | B | 3.00 | SA | ST,OV |

MAi | 0.9 | 0.5 | 0.3 | 5.2 | 6.2 | C | B | 2.33 | SA | ST,OV |

MAj | 2.4 | 1.5 | 0.4 | 5.2 | 5.2 | C | B | 4.88 | SA | ST,OV |

MAk | 1.9 | 1.2 | 0.5 | 5.2 | 6.3 | C | B | 3.10 | SA | ST,OV |

MAl | 2.3 | 1.2 | 0.4 | 5.2 | 7.3 | C | B | 4.38 | SA | ST,OV |

MAm | 2.9 | 1.8 | 0.4 | 2.4 | 5.6 | C | B | 5.88 | SA | SL |

MAn | 1.8 | 1.5 | 0.5 | 3.3 | 5.5 | S | D | 3.30 | SA | SL |

MAo | 1.7 | 1.1 | 0.5 | ind. | 3.7 | C | B | 2.80 | SA | OV |

**Figure A4.**Comparative satellite images of the boulder SUa (Torre Suda): (

**a**) The July 2018 image (eye elevation of 40 m); the green circle highlights the initial position. (

**b**) The June 2020 image (eye elevation of 40 m).

**Figure A5.**The boulder SUi, onshore displaced by the October 2018 storm. It was later re-mobilized as confirmed by the June 2020 GE image, where the boulder is placed further inland.

**Table A9.**Initial and final geographical coordinates of the displaced boulders at the Torre Suda coast; ind., indeterminable.

Initial Position | Final Position | ||||
---|---|---|---|---|---|

Boulder ID | Latitude | Longitude | Latitude | Longitude | TD [m] |

SUa | 39${}^{\circ}$57${}^{\prime}$06.44${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$46.14${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$06.71${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$46.02${}^{\u2033}$ E | 8.9 |

SUb | ind. | ind. | 39${}^{\circ}$57${}^{\prime}$08.03${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$46.61${}^{\u2033}$ E | - |

SUc | ind. | ind. | 39${}^{\circ}$57${}^{\prime}$08.08${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$46.66${}^{\u2033}$ E | - |

SUd | 39${}^{\circ}$57${}^{\prime}$35.42${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$37.61${}^{\u2033}$ E | ind. | ind. | - |

SUe | 39${}^{\circ}$57${}^{\prime}$36.70${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$37.65${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$36.72${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$37.64${}^{\u2033}$ E | 0.7 |

SUf | 39${}^{\circ}$57${}^{\prime}$36.56${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$37.82${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$36.76${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$37.89${}^{\u2033}$ E | 6.2 |

SUg | ind. | ind. | 39${}^{\circ}$57${}^{\prime}$36.81${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$37.86${}^{\u2033}$ E | - |

SUh | 39${}^{\circ}$57${}^{\prime}$38.82${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$37.32${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$38.95${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$37.47${}^{\u2033}$ E | 5.2 |

SUi | 39${}^{\circ}$57${}^{\prime}$40.27${}^{\u2033}$ N
| 18${}^{\circ}$01${}^{\prime}$36.40${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$40.60${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$36.71${}^{\u2033}$ E | 12.7 |

SUj | 39${}^{\circ}$57${}^{\prime}$40.84${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$36.25${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$40.85${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$36.26${}^{\u2033}$ E | 0.3 |

SUk | 39${}^{\circ}$57${}^{\prime}$40.87${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$36.17${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$40.87${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$36.18${}^{\u2033}$ E | 0.2 |

SUl | 39${}^{\circ}$57${}^{\prime}$40.87${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$36.05${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$40.89${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$36.03${}^{\u2033}$ E | 0.6 |

SUm | ind. | ind. | 39${}^{\circ}$57${}^{\prime}$41.14${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$36.06${}^{\u2033}$ E | - |

SUn | 39${}^{\circ}$57${}^{\prime}$40.74${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$35.90${}^{\u2033}$ E | 39${}^{\circ}$57${}^{\prime}$41.26${}^{\u2033}$ N | 18${}^{\circ}$01${}^{\prime}$35.79${}^{\u2033}$ E | 16.1 |

**Table A10.**Main features of the displaced boulders at the Torre Suda coast; see the caption of Table A2 for symbols.

Boulder ID | a [m] | b [m] | c [m] | ${\mathit{x}}_{\mathbf{i}}$ [m] | ${\mathit{x}}_{\mathbf{f}}$ [m] | Li | Sh | FI | PTS | MT |
---|---|---|---|---|---|---|---|---|---|---|

SUa | 5.4 | 4.6 | 1.9 | 0.0 | 0.0 | C | D | 2.63 | SM | SL |

SUb | 1.8 | 0.8 | 0.5 | ind. | 22.5 | C | B | 2.60 | SA | ST |

SUc | 1.7 | 0.9 | 0.7 | ind. | 23.1 | C | P | 1.86 | SA | ST |

SUd | 4.9 | 3.2 | 1.8 | 0.0 | ind. | C | B | 2.25 | SM | ind. |

SUe | 2.8 | 1.8 | 0.5 | 2.4 | 2.9 | C | B | 4.60 | SA | SL |

SUf | 2.3 | 1.9 | 0.7 | 3.4 | 6.7 | C | D | 3.00 | SA | ST |

SUg | 1.4 | 1.1 | 0.5 | ind. | 8.5 | C | D | 2.50 | SM | ST |

SUh | 1.9 | 1.3 | 0.7 | 2.2 | 6.7 | S | D | 2.29 | SA | ST |

SUi | 1.1 | 0.9 | 0.5 | 10.6
| 21.2 | C | D | 2.00 | SA | SL |

SUj | 1.6 | 1.0 | 0.4 | 3.3 | 3.8 | C | B | 3.25 | SA | SL |

SUk | 2.4 | 1.7 | 1.1 | 2.1 | 2.2 | C | D | 1.86 | SA | SL |

SUl | 3.8 | 2.8 | 0.9 | 0.0 | 0.0 | C | D | 3.89 | SA | SL |

SUm | 1.6 | 1.4 | 0.6 | ind. | 2.7 | C | D | 2.50 | SA | ST |

SUn | 2.2 | 1.9 | 0.8 | 0.0 | 0.0 | C | D | 2.56 | SM | SL |

**Table A11.**Initial and final geographical coordinates of the displaced boulders at the Capilungo coast; ind., indeterminable.

Initial Position | Final Position | ||||
---|---|---|---|---|---|

Boulder ID | Latitude | Longitude | Latitude | Longitude | TD [m] |

CAa | 39${}^{\circ}$55${}^{\prime}$40.51${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$56.23${}^{\u2033}$ E | 39${}^{\circ}$55${}^{\prime}$40.56${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$56.26${}^{\u2033}$ E | 1.6 |

CAb | 39${}^{\circ}$55${}^{\prime}$40.55${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$56.25${}^{\u2033}$ E | 39${}^{\circ}$55${}^{\prime}$40.60${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$56.27${}^{\u2033}$ E | 1.8 |

CAc | 39${}^{\circ}$55${}^{\prime}$40.48${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$56.22${}^{\u2033}$ E | 39${}^{\circ}$55${}^{\prime}$40.60${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$56.20${}^{\u2033}$ E | 3.9 |

CAd | 39${}^{\circ}$55${}^{\prime}$40.52${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$56.01${}^{\u2033}$ E | 39${}^{\circ}$55${}^{\prime}$40.56${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$56.10${}^{\u2033}$ E | 2.5 |

CAe | 39${}^{\circ}$55${}^{\prime}$41.15${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$55.35${}^{\u2033}$ E | 39${}^{\circ}$55${}^{\prime}$41.25${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$55.36${}^{\u2033}$ E | 3.2 |

CAf | 39${}^{\circ}$55${}^{\prime}$41.62${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$54.82${}^{\u2033}$ E | 39${}^{\circ}$55${}^{\prime}$41.66${}^{\u2033}$ N | 18${}^{\circ}$02${}^{\prime}$54.89${}^{\u2033}$ E | 1.9 |

**Figure A6.**Capilungo coast. The boulder CAd and the group CAa,b,c taken from the coastline; the area of the initial positions is marked by the blue dashed line. Compare with Figure 9.

**Table A12.**Main features of the displaced boulders at the Capilungo coast; see the caption of Table A2 for symbols.

Boulder ID | a [m] | b [m] | c [m] | ${\mathit{x}}_{\mathbf{i}}$ [m] | ${\mathit{x}}_{\mathbf{f}}$ [m] | Li | Sh | FI | PTS | MT |
---|---|---|---|---|---|---|---|---|---|---|

CAa | 1.1 | 0.6 | 0.3 | 6.4 | 8.2 | C | B | 2.83 | SA | ST |

CAb | 1.5 | 1.3 | 0.5 | 7.9 | 9.6 | C | D | 2.80 | SA | ST |

CAc | 2.1 | 1.4 | 0.4 | 5.7 | 8.3 | C | D | 4.38 | SA | ST |

CAd | 2.6 | 2.4 | 0.9 | 3.9 | 6.7 | C | D | 2.78 | SA | OV |

CAe | 1.8 | 1.6 | 0.6 | 4.7 | 5.6 | C | D | 2.83 | SA | OV |

CAf | 2.6 | 1.9 | 0.5 | 3.3 | 5.4 | C | D | 4.50 | SA | OV |

**Table A13.**Initial and final geographical coordinates of the displaced boulders at the Ciardo coast; ind., indeterminable.

Initial Position | Final Position | ||||
---|---|---|---|---|---|

Boulder ID | Latitude | Longitude | Latitude | Longitude | TD [m] |

CIa | 39${}^{\circ}$48${}^{\prime}$09.50${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.41${}^{\u2033}$ E | 39${}^{\circ}$48${}^{\prime}$09.51${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.29${}^{\u2033}$ E | 2.8 |

CIb | 39${}^{\circ}$48${}^{\prime}$09.50${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.41${}^{\u2033}$ E | 39${}^{\circ}$48${}^{\prime}$09.53${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.35${}^{\u2033}$ E | 1.7 |

CIc | 39${}^{\circ}$48${}^{\prime}$09.50${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.41${}^{\u2033}$ E | 39${}^{\circ}$48${}^{\prime}$09.58${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.31${}^{\u2033}$ E | 3.3 |

CId | 39${}^{\circ}$48${}^{\prime}$09.50${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.41${}^{\u2033}$ E | 39${}^{\circ}$48${}^{\prime}$09.55${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.39${}^{\u2033}$ E | 1.6 |

CIe | 39${}^{\circ}$48${}^{\prime}$09.53${}^{\u2033}$ N | 18${}^{\circ}$19${}^{\prime}$42.20${}^{\u2033}$ E | ind. | ind. | - |

**Figure A7.**Ciardo coastal stretch. The boulders CIa, CIb, CIc, CId, and their sockets taken from the coastline.

**Table A14.**Main features of the displaced boulders at the Ciardo coast; see the caption of Table A2 for symbols.

Boulder ID | a [m] | b [m] | c [m] | ${\mathit{x}}_{\mathbf{i}}$ [m] | ${\mathit{x}}_{\mathbf{f}}$ [m] | Li | Sh | FI | PTS | MT |
---|---|---|---|---|---|---|---|---|---|---|

CIa | 1.0 | 0.8 | 0.5 | 5.2 | 3.5 | L | D | 1.80 | JB | ST |

CIb | 1.4 | 1.2 | 0.5 | 5.2 | 4.6 | L | D | 2.60 | JB | ST |

CIc | 2.2 | 1.4 | 0.5 | 5.2 | 5.0 | L | B | 3.60 | SA | ST |

CId | 1.9 | 0.9 | 0.7 | 5.2 | 5.9 | L | P | 2.00 | JB | ST |

CIe | 1.8 | 1.1 | ind. | 1.5 | ind. | L | - | - | JB | ind. |

**Table A15.**Initial and final geographical coordinates of the displaced boulders at the Torre Sant’Emiliano coast; ind., indeterminable. TD = Transport Distance (m).

Initial Position | Final Position | ||||
---|---|---|---|---|---|

Boulder ID | Latitude | Longitude | Latitude | Longitude | TD |

SEa | 40${}^{\circ}$05${}^{\prime}$04.92${}^{\u2033}$ N | 18${}^{\circ}$29${}^{\prime}$34.75${}^{\u2033}$ E | ind. | ind. | - |

SEb | 40${}^{\circ}$05${}^{\prime}$05.02${}^{\u2033}$ N | 18${}^{\circ}$29${}^{\prime}$34.87${}^{\u2033}$ E | ind. | ind. | - |

**Table A16.**Main features of the displaced boulders at the Torre Sant’Emiliano coast; see the caption of Table A2 for symbols.

Boulder ID | a [m] | b [m] | c [m] | ${\mathit{x}}_{\mathbf{i}}$ [m] | ${\mathit{x}}_{\mathbf{f}}$ [m] | Li | Sh | FI | PTS | MT |
---|---|---|---|---|---|---|---|---|---|---|

SEa | 6.7 | 3.8 | ind. | 3.6 | ind. | L | - | - | SA | ind. |

SEb | 3.2 | 2.5 | ind. | 1.5 | ind. | L | - | - | SA | ind. |

**Figure A8.**Satellite images of sockets: (

**a**) The June 2020 image of the sockets of the boulders CIa,b,c,d (eye elevation of 35 m). (

**b**) The June 2020 image of the sockets of the boulders SEa,b (eye elevation of 35 m).

**Figure A9.**Torre Sant’Emiliano coast. The sockets of the boulders SEa and SEb are highlighted by the green dashed lines.

## Appendix B

**Table A17.**Difference between the measurements taken with the GE’s ruler tool and the tape measure at the central area of Punta Pizzo headland.

Boulder ID | GE Ruler [m] | Tape Measure [m] | Deviation |
---|---|---|---|

PIg | 2.8 | 3.0 | −0.2 |

PIh | 14.3 | 13.9 | 0.4 |

PIj | 15.6 | 15.3 | 0.3 |

PIm | 0.6 | 0.6 | - |

PIn | 0.7 | 0.8 | −0.1 |

**Figure A10.**Central area of Punta Pizzo headland, examples of TD ground control (cf. Figure 5). Top left the 28 June 2020 GE image; (

**a**) The tape is 3 m long. (

**b**,

**c**) The tape is 1 m long.

## Appendix C

**Figure A11.**Map of the wind at 10 m height over the Mediterranean basin, as forecast for 29 October 2018 at 6 p.m. by the BOLAM model. The arrows indicate the wind direction and the wind speed is shown in the colour scale.

**Figure A12.**Map of the wind at 10 m height over the Mediterranean basin, as forecast for 12 November 2019 at 6 a.m. by the BOLAM model. The arrows indicate the wind direction and the wind speed is shown in the colour scale.

**Figure A13.**Map of the wind at 10 m height over the Mediterranean basin, as forecast for 24 November 2019 at 12 p.m. by the BOLAM model. The arrows indicate the wind direction and the wind speed is shown in the colour scale.

**Figure A14.**Map of the wind at 10 m height over the Mediterranean basin, as forecast for 22 December 2019 at 9 a.m. by the BOLAM model. The arrows indicate the wind direction and the wind speed is shown in the colour scale.

**Figure A15.**Map of the wind at 10 m height over the Mediterranean basin, as forecast for 2 March 2020 at 21 p.m. by the BOLAM model. The arrows indicate the wind direction and the wind speed is shown in the colour scale.

## Appendix D

**V**as

**V = abcq**, which means the boulder height times projected base-area, Equation (A5) is equivalent to Equation (A3) with no floating, ${C}_{\mathrm{L}}$ = 0 and $\theta $ = 0. We used Nandasena expressions (A1)–(A4) to test the starting condition for the boulder motion and expression (A5) to test the final condition. Literature data are used herein for the choice of the values of the coefficients in Equations (A3)–(A5); the selected values are: $\mu $ = 0.7, ${C}_{\mathrm{L}}$ = 0.178, ${C}_{\mathrm{D}}$ = 1.95, q = 0.73 [7,21,22,23,48,57]. The bed slope angle $\theta $ is assumed to be zero due to the flat morphology of the study area.

**Table A18.**Minimumwave heights ${H}_{\mathrm{m}}$ (m) required to displace the boulders of Punta Prosciutto headland.

Nandasena et al. (2011) [21] | Engel and May (2012) [48] | |
---|---|---|

PRa | 3.6 | 1.2 |

PRb | 7.2 | 1.4 |

PRc | 4.5 | 1.7 |

PRd | 1.6 | 1.6 |

PRe | 1.1 | 1.5 |

PRf | 1.3 | 1.4 |

PRg | – | 1.3 |

PRh | – | 1.6 |

PRi | 3.6 | 1.8 |

PRj | 2.7 | 1.1 |

PRk | 3.6 | 1.8 |

PRl | 1.6 | 1.4 |

PRm | 1.1 | 1.1 |

PRn | 4.5 | 2.9 |

PRo | 3.6 | 1.6 |

PRp | 5.4 | 1.8 |

PRq | 5.4 | 1.7 |

PRr | 3.6 | 1.7 |

**Table A19.**Minimum wave heights ${H}_{\mathrm{m}}$ (m) required to displace the boulders of the Torre Sant’Isidoro coast.

**Table A20.**Minimum wave heights ${H}_{\mathrm{m}}$ (m) required to displace the boulders of the Punta Pizzo headland.

Nandasena et al. (2011) [21] | Engel and May (2012) [48] | |
---|---|---|

PIa | 0.3 | 0.8 |

PIb | 0.5 | 1.3 |

PIc | 0.5 | 1.3 |

PId | 0.5 | 1.3 |

PIe | 0.4 | 1.2 |

PIf | 6.3 | 1.2 |

PIg | 1.7 | 1.7 |

PIh | 3.6 | 2.6 |

PIi | – | 1.1 |

PIj | – | 0.8 |

PIk | 0.8 | 1.0 |

PIl | – | 0.8 |

PIm | 0.7 | 2.0 |

PIn | 0.5 | 1.6 |

PIo | 0.3 | 0.7 |

PIp | 2.0 | 1.8 |

PIq | – | 0.8 |

PIr | 3.6 | 1.7 |

**Table A21.**Minimum wave heights ${H}_{\mathrm{m}}$ (m) required to displace the boulders of the Mancaversa coast.

Nandasena et al. (2011) [21] | Engel and May (2012) [48] | |
---|---|---|

MAa | 4.5 | 2.5 |

MAb | 0.6 | 1.8 |

MAc | 1.5 | 1.5 |

MAd | – | 1.0 |

MAe | – | 1.0 |

MAf | 3.6 | 0.6 |

MAg | 2.7 | 0.8 |

MAh | 2.7 | 0.6 |

MAi | 2.7 | 0.6 |

MAj | 3.6 | 1.8 |

MAk | 4.5 | 1.4 |

MAl | 3.6 | 1.4 |

MAm | 0.7 | 2.2 |

MAn | 0.8 | 2.4 |

MAo | 1.4 | 1.3 |

**Table A22.**Minimum wave heights ${H}_{\mathrm{m}}$ (m) required to displace the boulders of the Torre Suda coast.

Nandasena et al. (2011) [21] | Engel and May (2012) [48] | |
---|---|---|

SUa | 2.0 | 5.5 |

SUb | 4.5 | 1.0 |

SUc | 6.3 | 1.1 |

SUd | – | 3.8 |

SUe | 0.7 | 2.2 |

SUf | 4.5 | 2.3 |

SUg | 4.5 | 1.3 |

SUh | 7.9 | 1.7 |

SUi | 0.4 | 1.1 |

SUj | 0.4 | 1.2 |

SUk | 0.8 | 2.0 |

SUl | 1.2 | 3.4 |

SUm | 5.4. | 1.7 |

SUn | 0.8 | 2.3 |

**Table A23.**Minimum wave heights ${H}_{\mathrm{m}}$ (m) required to displace the boulders of the Capilungo coast.

Nandasena et al. (2011) [21] | Engel and May (2012) [48] | |
---|---|---|

CAa | 2.7 | 0.7 |

CAb | 4.5 | 1.6 |

CAc | 3.6 | 1.7 |

CAd | 3.2 | 2.9 |

CAe | 2.1 | 1.9 |

CAf | 2.6 | 2.3 |

**Table A24.**Minimum wave heights ${H}_{\mathrm{m}}$ (m) required to displace the boulders of the Ciardo coast.

**Table A25.**Minimum wave heights ${H}_{\mathrm{m}}$ (m) required to displace the boulders of the Torre Sant’Emiliano coast.

## References

- Mastronuzzi, G.; Sansò, P. Large boulder accumulation by extreme waves along the Adriatic coast of southern Apulia (Italy). Quat. Int.
**2004**, 120, 173–184. [Google Scholar] [CrossRef] - Barbano, M.S.; Pirrotta, C.; Gerardi, F. Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposit? Mar. Geol.
**2010**, 275, 140–154. [Google Scholar] [CrossRef] - Knight, J.; Burningham, H. Boulder dynamics on an Atlantic-facing rock coastline, northwest Ireland. Mar. Geol.
**2011**, 283, 56–65. [Google Scholar] [CrossRef] - Causon Deguara, J.; Gauci, R. Evidence of extreme wave events from boulder deposits on the south-east coast of Malta (Central Mediterranean). Nat. Hazards
**2017**, 86, 543–568. [Google Scholar] [CrossRef] - Oetjen, J.; Engel, M.; Pudasaini, S.P.; Schuettrumpf, H. Significance of boulder shape, shoreline configuration and pre-transport setting for the transport of boulders by tsunamis. Earth Surf. Process. Landf.
**2020**, 45, 2118–2133. [Google Scholar] [CrossRef][Green Version] - Hansom, J.D.; Switzer, A.D.; Pile, J. Extreme waves: Causes, characteristics, and impact on coastal environments and society. In Coastal and Marine Hazards, Risks, and Disasters; Ellis, J.T., Sherman, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 307–334. [Google Scholar]
- Biolchi, S.; Furlani, S.; Devoto, S.; Scicchitano, G.; Korbar, T.; Vilibic, I.; Sepic, J. The origin and dynamics of coastal boulders in a semi-enclosed shallow basin: A northern Adriatic case study. Mar. Geol.
**2019**, 411, 62–77. [Google Scholar] [CrossRef] - Naylor, L.A.; Stephenson, W.J.; Smith, H.C.M.; Way, O.; Mendelssohn, J.; Cowley, A. Geomorphological control on boulder transport and coastal erosion before, during and after an extreme extra-tropical cyclone. Earth Surf. Process. Landf.
**2016**, 41, 685–700. [Google Scholar] [CrossRef][Green Version] - Autret, R.; Dodet, G.; Suanez, S.; Roudaut, G.; Fichaut, B. Long–term variability of supratidal coastal boulder activation in Brittany (France). Geomorphology
**2018**, 304, 184–200. [Google Scholar] [CrossRef] - Delle Rose, M.; Fidelibus, C.; Martano, P.; Orlanducci, L. Storm-induced boulder displacements: Inferences from field surveys and hydrodynamic equations. Geosciences
**2020**, 10, 374. [Google Scholar] [CrossRef] - Hastewell, L.; Inkpen, R.; Bray, M.; Schaefer, M. Quantification of contemporary storm-induced boulder transport on an intertidal shore platform using radio frequency identification technology. Earth Surf. Process. Landf.
**2020**, 45, 1601–1621. [Google Scholar] [CrossRef] - Hoffmeister, D.; Curdt, C.; Bareth, G. Monitoring the sedimentary budget and dislocated boulders in western Greece—Results since 2008. Sedimentology
**2020**, 67, 1411–1430. [Google Scholar] [CrossRef][Green Version] - Scicchitano, G.; Scardino, G.; Tarascio, S.; Monaco, C.; Barracane, G.; Locuratolo, G.; Milella, M.; Piscitelli, A.; Mazza, G.; Mastronuzzi, G. The First Video Witness of Coastal Boulder Displacements Recorded during the Impact of Medicane “Zorbas” on Southeastern Sicily. Water
**2020**, 12, 1497. [Google Scholar] [CrossRef] - Collin, A.; Etienne, S.; Planes, S. High-energy events, boulder deposits and the use of very high resolution remote sensing in coral reef environments. J. Coast. Res.
**2013**, 65, 690–695. [Google Scholar] [CrossRef] - Boesl, F.; Engel, M.; Eco, R.C.; Galang, J.B.; Gonzalo, L.A.; Llanes, F.; Quix, E.; Brückner, H. Digital mapping of coastal boulders–high-resolution data acquisition to infer past and recent transport dynamics. Sedimentology
**2020**, 67, 1393–1410. [Google Scholar] [CrossRef] - Haslett, S.K.; Wong, B.R. Reconnaissance survey of coastal boulders in the Moro Gulf (Philippines) using Google Earth imagery: Initial insights into Celebes Sea tsunami events. Bull. Geol. Soc. Malays.
**2019**, 68, 37–44. [Google Scholar] [CrossRef][Green Version] - Ruban, D.A. Finding Coastal Megaclast Deposits: A Virtual Perspective. J. Mar. Sci. Eng.
**2020**, 8, 164. [Google Scholar] [CrossRef][Green Version] - Budetta, P.; Galietta, G.; Santo, A. A methodology for the study of the relation between coastal cliff erosion and the mechanical strength of soils and rock masses. Eng. Geol.
**2000**, 56, 243–256. [Google Scholar] [CrossRef] - Paris, R.; Naylor, L.A.; Stephensonc, W.J. Boulders as a signature of storms on rock coasts. Mar. Geol.
**2011**, 283, 1–11. [Google Scholar] [CrossRef] - Kennedy, D.M.; Woods, J.L.D.; Naylor, L.A.; Hansomc, J.D.; Rosserd, N.J. Intertidal boulder-based wave hindcasting can underestimate wave size: Evidence from Yorkshire, UK. Mar. Geol.
**2019**, 411, 98–106. [Google Scholar] [CrossRef][Green Version] - Nandasena, N.A.K.; Paris, R.; Tanaka, N. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol.
**2011**, 281, 70–84. [Google Scholar] [CrossRef] - Piscitelli, A.; Milella, M.; Hippolyte, J.C.; Shah-Hosseini, M.; Morhange, C.; Mastronuzzi, G. Numerical approach to the study of coastal boulders: The case of Martigues, Marseille, France. Quat. Int.
**2017**, 439, 52–64. [Google Scholar] [CrossRef] - Huang, S.Y.; Yen, J.Y.; Wu, B.L.; Shih, N.W. Field observations of sediment transport across the rocky coast of east Taiwan: Impacts of extreme waves on the coastal morphology by Typhoon Soudelor. Mar. Geol.
**2020**, 421, 106088. [Google Scholar] [CrossRef] - Carnell, R.E.; Senior, C.A. Changes in mid-latitude variability due to increasing greenhouse gases and sulphate aerosols. Clim. Dyn.
**1998**, 14, 369–383. [Google Scholar] [CrossRef] - Nissen, K.M.; Leckebusch, G.C.; Pinto, J.G.; Ulbrich, U. Mediterranean cyclones and windstorms in a changing climate. Reg. Environ. Chang.
**2014**, 14, 1873–1890. [Google Scholar] [CrossRef][Green Version] - Mastronuzzi, G.; Sansò, P. Boulders transport by catastrophic waves along the Ionian coast of Apulia (southern Italy). Mar. Geol.
**2000**, 170, 93–103. [Google Scholar] [CrossRef] - Mastronuzzi, G.; Pignatelli, C.; Sansò, P.; Selleri, G. Boulder accumulations produced by the 20th of February, 1743 tsunami along the coast of southeastern Salento (Apulia region, Italy). Mar. Geol.
**2007**, 242, 191–205. [Google Scholar] [CrossRef] - Milli, S.; Girasoli, D.E.; Tentori, D.; Tortora, P. Sedimentology and coastal dynamics of carbonate pocket beaches: The Ionian-Sea Apulia coast between Torre Colimena and Porto Cesareo (Southern Italy). J. Mediterranean Earth Sci.
**2017**, 9, 29–66. [Google Scholar] - Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ.
**2017**, 202, 18–27. [Google Scholar] [CrossRef] - Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens.
**2018**, 10, 1509. [Google Scholar] [CrossRef][Green Version] - Funiciello, R.; Montone, P.; Parotto, M.; Salvini, F.; Tozzi, M. Geodynamical evolution of an intraorogenic foreland: The Apulia case history (Italy). Boll. Soc. Geol. Ital.
**1991**, 110, 419–425. [Google Scholar] - Doglioni, C.; Tropeano, M.; Mongelli, F.; Pieri, P. Middle-Late Pleistocene uplift of Puglia: An “anomaly” in the Apenninic foreland. Mem. Soc. Geol. Ital.
**1996**, 51, 101–117. [Google Scholar] - Ricchetti, G.; Ciaranfi, N. Note Illustrative della Carta Geologica d’Italia alla Scala 1:50.000—Foglio 536 Ugento; ISPRA: Roma, Regione Lombardia, Italy, 2013; p. 124. (In Italian)
- Tropeano, M.; Spalluto, L. Present-day temperate-type carbonate sedimentation on Apulia shelves (southern Italy). GeoActa
**2006**, 5, 129–142. [Google Scholar] - Morucci, S.; Picone, M.; Nardone, G.; Arena, G. Tides and waves in the central Mediterranean Sea. J. Oper. Oceanogr.
**2016**, 9, s10–s17. [Google Scholar] [CrossRef][Green Version] - Dentale, F.; Furcolo, P.; Pugliese Carratelli, E.; Reale, F.; Contestabile, P.; Tomasicchio, G.R. Extreme wave analysis by integrating model and wave buoy data. Water
**2018**, 10, 373. [Google Scholar] [CrossRef][Green Version] - Brill, D.; May, S.M.; Mhammdi, N.; King, G.; Lehmann, B.; Burow, C.; Wolf, D.; Zander, A.; Bruckner, H. Evaluating optically stimulated luminescence rock surface exposure dating as a novel approach for reconstructing coastal boulder movement on decadal to centennial timescales. Earth Surf. Dyn.
**2021**, 9, 205–234. [Google Scholar] [CrossRef] - Hoffmeister, D. Mapping of subaerial clasts. In Geological Records of Tsunamis and Other Extreme Waves; Engel, M., Pilarczyk, J., May, S.M., Brill, D., Garrett, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 169–184. [Google Scholar]
- Kennedy, A.B.; Mori, N.; Zhang, Y.; Yasuda, T.; Chen, S.; Tajima, Y.; Pecor, W.; Toride, K. Observations and Modeling of Coastal Boulder Transport and Loading During Super Typhoon Haiyan. Coast. Eng. J.
**2016**, 58, 1640004-1–1640004-25. [Google Scholar] [CrossRef] - Blott, S.G.; Pye, K. Particle shape: A review and new methods of characterization and classification. Sedimentology
**2008**, 55, 31–63. [Google Scholar] [CrossRef] - Blair, T.C.; Mcpherson, J.G. Grain-size and textural classification of coarse sedimentary particles. J. Sed. Res.
**1999**, 69, 6–19. [Google Scholar] [CrossRef] - GLOBO-BOLAM-MOLOCH Forecasts. Available online: https://www.isac.cnr.it/dinamica/projects/forecasts/bolam/ (accessed on 15 May 2021).
- Hasselmann, K.; Ross, D.B.; Muller, P.; Sell, W. A parametric wave prediction model. J. Phys. Oceanogr.
**1975**, 6, 200–228. [Google Scholar] [CrossRef][Green Version] - Hsu, S.A. (Ed.) Coastal Meteorology; Academic Press: Cambridge, MA, USA, 1988; p. 260. [Google Scholar]
- Gill, A. Atmosphere-Ocean Dynamics, 1st ed.; Academic Press: London, UK, 1982; p. 662. [Google Scholar]
- Pignatelli, C.; Sansò, P.; Mastronuzzi, G. Evaluation of tsunami flooding using geomorphologic evidence. Mar. Geol.
**2009**, 260, 6–18. [Google Scholar] [CrossRef] - Bujan, N.; Cox, R. Maximal heights of nearshore storm waves and resultant onshore flow velocities. Front. Mar. Sci.
**2020**, 7, 309. [Google Scholar] [CrossRef] - Engel, M.; May, S.M. Bonaire’s boulder fields revisited: Evidence for Holocene tsunami impact on the Leeward Antilles. Quat. Sci. Rev.
**2012**, 54, 126–141. [Google Scholar] [CrossRef] - Cox, R.; Ardhuin, F.; Dias, F.; Autret, R.; Beisiegel, N.; Earlie, C.S.; Herterich, J.G.; Kennedy, A.; Paris, R.; Raby, A.; et al. Systematic review shows that work done by storm waves can be misinterpreted as tsunami-related because commonly used hydrodynamic equations are flawed. Front. Mar. Sci.
**2020**, 7, 4. [Google Scholar] [CrossRef] - Cox, J.C.; Machemehl, J. Overload bore propagation due to an overtopping wave. J. Waterw. Port Coast. Ocean Eng.
**1986**, 112, 161–163. [Google Scholar] [CrossRef] - Shao, S.J.; Graham, D.I.; Reeve, D.E.; James, P.W.; Chadwick, A.J. Simulation of wave overtopping by an incompressible SPH model. Coast Eng.
**2006**, 53, 723–735. [Google Scholar] - Ciricugno, L.; Delle Rose, M.; Fidelibus, C.; Orlanducci, L.; Mangia, M. Sullo spostamento di massi costieri causato da onde “estreme” (costa ionica salentina). Geol. Territ.
**2019**, 16, 15–23. (In Italian) [Google Scholar] - Delle Rose, M.; Ciricugno, L.; Fidelibus, C.; Martano, P.; Marzo, L.; Orlanducci, L. Considerazioni geologiche su processi morfodinamici causati sulla costa ionica salentina da recenti tempeste. Geol. Territ.
**2020**, 18, 5–15. (In Italian) [Google Scholar] - Davolio, S.; Della Fera, S.; Laviola, S.; Miglietta, M.M.; Levizzani, V. Heavy precipitation over Italy from the Mediterranean storm “Vaia” in October 2018: Assessing the role of an atmospheric river. Mon. Weather Rev.
**2020**, 148, 3571–3588. [Google Scholar] [CrossRef] - Delle Rose, M.; Martano, P.; Fidelibus, C. The Recent Floods in the Asso Torrent Basin (Apulia, Italy): An Investigation to Improve the Stormwater Management. Water
**2020**, 12, 661. [Google Scholar] [CrossRef][Green Version] - Biolchi, S.; Denamiel, C.; Devoto, S.; Korbar, T.; Macovaz, V.; Scicchitano, G.; Vilibic, I.; Furlani, S. Impact of the October 2018 storm Vaia on coastal boulders in the northern Adriatic Sea. Water
**2019**, 11, 2229. [Google Scholar] [CrossRef][Green Version] - Imamura, F.; Goto, K.; Ohkubo, S. A numerical model for the transport of a boulder by tsunami. J. Geophys. Res. Ocean.
**2008**, 113, C01008. [Google Scholar] [CrossRef] - Nandasena, N.A.K.; Tanaka, N. Boulder transport by high energy: Numerical model-fitting experimental observations. Ocean Eng.
**2013**, 57, 163–179. [Google Scholar] [CrossRef] - Lau, A.Y.A.; Terry, J.P.; Ziegler, A.; Pratap, A.; Harris, D. Boulder emplacement and remobilisation by cyclone and submarine landslide tsunami waves near Suva City, Fiji. Sed. Geol.
**2018**, 364, 242–257. [Google Scholar] [CrossRef] - Scheffers, A.M.; Kinis, S. Stable imbrication and delicate/unstable settings in costal boulder deposits: Indicators for tsunami dislaocation? Quat. Int.
**2014**, 332, 73–84. [Google Scholar] [CrossRef] - Cox, R.; O’Boyle, L.; Cytrynbaum, J. Imbricated Coastal Boulder Deposits are Formed by Storm Waves, and Can Preserve a Long-Term Storminess Record. Sci. Rep.
**2019**, 9, 10784. [Google Scholar] [CrossRef] [PubMed] - Sunamura, T.; Horikawa, K. Two dimensional beach transformation due to waves. In Proceedings of the 14th Coastal Engineering Conference, American Society of Civilian Engineers. Copenhagen, Denmark, 24–28 June 1974; pp. 920–938. [Google Scholar]
- Lionello, P.; Dalan, F.; Elvini, F. Cyclones in the Mediterranean region: The present and the doubled CO
_{2}climate scenarios. Clim. Res.**2002**, 22, 147–159. [Google Scholar] [CrossRef] - Anagnostopoulou, C.; Tolika, K.; Flocas, H.; Maheras, P. Cyclones in the Mediterranean region: Present and future climate scenarios derived from a general circulation model (HadAM3P). Adv. Geosci.
**2006**, 7, 9–14. [Google Scholar] [CrossRef][Green Version] - González-Alemán, J.J.; Pascale, S.; Gutierrez-Fernandez, J.; Murakami, H.; Gaertner, M.A.; Vecchi, G.A. Potential increase in hazard from Mediterranean hurricane activity with global warming. Geophys. Res. Lett.
**2019**, 46, 1754–1764. [Google Scholar] [CrossRef] - Pulighe, G.; Baiocchi, V.; Lupia, F. Horizontal accuracy assessment of very high resolution Google Earth images in the city of Rome, Italy. Int. J. Digit. Earth
**2016**, 9, 1753–8947. [Google Scholar] [CrossRef] - Khuwaja, Z.; Arain, J.; Ali, R.; Meghwar, S.L.; Jatoi, M.A.; Shaikh, F.A. Accuracy Measurement of Google Earth Using GPS and Manual Calculations. In Proceedings of the International Conference Sustainable Development in Civil Engineering, Jamshoro, Pakistan, 23–25 November 2017; Mehran University: Jamshoro, Pakistan, 2018; p. 9. [Google Scholar]

**Figure 1.**Simplified geological map of Southern Apulia: 1, Quaternary units (carbonates, marls, and bioclastic deposits); 2, Tertiary units (carbonates and marls); 3, Cretaceous units (limestones and dolostones). Other Symbols: 4, −10 m isobath; 5, −20 m isobath; 6, −50 m isobath; 7, previously known site; 8, new site. Isobaths from the nautical chart of “Istituto Idrografico della Marina Militare” of Italy (1:100,000).

**Figure 3.**Comparative satellite images of Punta Prosciutto. The initial positions of the boulders are highlighted in blue, the final ones in red, and sockets are green. Red arrows highlight the displacements. Topography from the technical map of Lecce Province (1:5000).

**Figure 4.**Two main boulder clusters of Punta Prosciutto headland: (

**a**) Four imbricated boulders arranged in the SW-NE direction. (

**b**) Group of closely spaced boulders that includes the largest (PRn) of this stretch of coast.

**Figure 5.**Comparative satellite images of Punta Pizzo. The initial positions of the boulders are highlighted in blue, the final ones in red, and the sockets are green. Red arrows highlight the displacements. Topography from the technical map of Lecce Province (1:5000).

**Figure 6.**Comparative satellite images of Mancaversa. The initial positions of the boulders are highlighted in blue, the final ones in red; a rockfall are white. Red arrows highlight the displacements. Topography from the technical map of Lecce Province (1:5000).

**Figure 7.**Comparative satellite images of Torre Suda. The initial positions of the boulders are highlighted in blue, the final ones in red, and the sockets are green. Red arrows highlight the displacements. In the June 2020 image, the boulder SUi as transported by the October 2018 storm is reported (in dark). Topography from the technical map of Lecce Province (1:5000).

**Figure 8.**Torre Suda coastal stretch: (

**a**) the largest boulder SUa and its socket taken from S. (

**b**) The boulders SUj,k,l taken from N; the portion of SUl’s socket exposed by the displacement is highlighted in green.

**Figure 9.**Comparative satellite images of Capilungo. The initial positions of the boulders are highlighted in blue, and the final ones in red. Red arrows highlight the displacements. Topography from the technical map of Lecce Province (1:5000).

**Figure 10.**Flatness Index (FI) vs. Transport Distance (TD) diagram. Symbol size is related to the clast size (small = coarse boulder, medium = very coarse boulder, large = fine block). The solid blue line and the dashed blue line encloses the areas of highest incidence for very coarse and coarse boulders, respectively.

**Figure 11.**Final distance (${x}_{\mathrm{f}}$) vs. Transport Distance (TD) diagram. Symbol size is related to the clast size (small = coarse boulder, medium = very coarse boulder, and large = fine block).

**Figure 12.**Comparison between the calculated onshore wave height H (lines) and the minimum wave height required to move the boulders ${H}_{\mathrm{m}}$ (circles) as a function of the distance X from the coastline and the coast height ${H}_{\mathrm{c}}$ (colours) for different storm spectral peak waves ${H}_{0}$. Continuous line: Wave height as a function of the onshore distance calculated by Equation (A6), with T estimated by Equation (1), for the 12–13 November 2019 storm (${H}_{0}$ = 9.0 m, ${H}_{\mathrm{s}}$ = 1.5 m). Black: ${H}_{\mathrm{c}}$ = 0.5 m, Red: ${H}_{\mathrm{c}}$ = 1.5 m, and Blue: ${H}_{\mathrm{c}}$ = 2.5 m. Dashed line: same as the continuous line but refers to the October 2018 storm (${H}_{0}$ = 7.5 m, ${H}_{\mathrm{s}}$ = 1.5 m). Dot-dashed line: Wave height as a function of the onshore distance calculated by Equation (A6) for ${H}_{0}$ = 4.5 m and ${H}_{\mathrm{c}}$ = 0.5 m. Filled circles: ${H}_{\mathrm{m}}$ calculated by Equations (A1)–(A4) as a function of the initial onshore distance X of the boulder and the coast height (colours as above). Empty circles: ${H}_{\mathrm{m}}$ calculated by Equation (A5) as a function of the final onshore distance X of the boulder and the coast height (colours as above).

**Table 1.**Acronym code (ID Code), number of identified Boulders, and number of measured Transport Distances (No. of TD).

Site Name | ID Code | Boulders | No. of TD |
---|---|---|---|

Punta Prosciutto | PR | 18 | 13 |

Sant’Isidoro | SI | 3 | 2 |

Punta Pizzo | PI | 18 | 13 |

Mancaversa | MA | 15 | 12 |

Torre Suda | SU | 14 | 9 |

Capilungo | CA | 6 | 6 |

Ciardo | CI | 5 | 4 |

Sant’Emiliano | SE | 2 | - |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Delle Rose, M.; Martano, P.; Orlanducci, L. Coastal Boulder Dynamics Inferred from Multi-Temporal Satellite Imagery, Geological and Meteorological Investigations in Southern Apulia, Italy. *Water* **2021**, *13*, 2426.
https://doi.org/10.3390/w13172426

**AMA Style**

Delle Rose M, Martano P, Orlanducci L. Coastal Boulder Dynamics Inferred from Multi-Temporal Satellite Imagery, Geological and Meteorological Investigations in Southern Apulia, Italy. *Water*. 2021; 13(17):2426.
https://doi.org/10.3390/w13172426

**Chicago/Turabian Style**

Delle Rose, Marco, Paolo Martano, and Luca Orlanducci. 2021. "Coastal Boulder Dynamics Inferred from Multi-Temporal Satellite Imagery, Geological and Meteorological Investigations in Southern Apulia, Italy" *Water* 13, no. 17: 2426.
https://doi.org/10.3390/w13172426