Assessment of Future Climate Change Impact on an Agricultural Reservoir in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Meteorological and Hydrological Data
2.2.2. Future Climate Data Selection
2.3. Research Analysis Method
2.3.1. Construction of RCP Climate Change Data
2.3.2. Irrigation Water Requirement Calculation
2.3.3. Reservoir Simulation Operation
2.3.4. Future Water Supply Capacity Evaluation
3. Results and Discussion
3.1. Validation and Calibration of Reservoir Simulation Operation
3.2. Hydrological Changes in the Reservoir Watershed by Climate Change
3.3. Evaluation of Future Irrigation Water Supply Capacity by Reservoir Embankment Heightening
3.4. Evaluation of Future Instream Water Supply
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- UNESCO. United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
- Korea Interagency Cooperation (KIC). Abnormal Climate Report in 2019; Korea Meteorological Administration: Seoul, Korea, 2020. [Google Scholar]
- Jang, S.H.; Lee, J.K.; Oh, J.H.; Lee, H.S. Drought and water deficit analysis in Imjin River Basin: Focusing on influence of Hwanggang Dam in North Korea. Crisisonomy 2016, 12, 79–95. [Google Scholar] [CrossRef]
- Jung, W.S.; Jo, B.G.; Kim, Y.D.; Kim, S.E. A study on the characteristics of cyanobacteria in the mainstream of Nakdong River using decision trees. J. Wet. Res. 2019, 21, 312–320. [Google Scholar]
- Kim, J.H.; Sang, W.G.; Shin, P.; Cho, H.S.; Seo, M.C.; Yoo, B.G.; Kim, K.S. Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. J. Crop. Sci. Biotechnol. 2016, 18, 257–264. [Google Scholar] [CrossRef]
- Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. Mitigating the effects of climate change on the water resources of the Columbia River basin. Clim. Chang. 2004, 62, 233–256. [Google Scholar] [CrossRef]
- Gohari, A.; Bozorgi, A.; Madani, K.; Elledge, J.; Berndtsson, R. Adaptation of surface water supply to climate change in Central Iran. J. Water Clim. Chang. 2014, 5, 391–407. [Google Scholar] [CrossRef]
- Fujihara, Y.; Tanaka, K.; Watanabe, T.; Nagano, T.; Kojiri, T. Assessing the impacts of climate change on the water resources of the Seyhan River basin in Turkey: Use of dynamically downscaled data for hydrologic simulations. J. Hydrol. 2008, 353, 33–48. [Google Scholar] [CrossRef]
- Kim, J.W. Assessment of Water Supply Capacity of Yongdam and Daecheong Dam by Climate Change Scenarios. Master’s Thesis, Kyungbook National University, Daegu, Korea, 2012. [Google Scholar]
- Chung, G.H.; Jeon, M.H.; Kim, H.S.; Kim, T.W. Adaptation capability of reservoirs considering climate change in the Han River basin, South Korea. J. Korean Soc. Civ. Eng. 2011, 31, 439–447. [Google Scholar]
- Ministry of Land, Infrastructure and Transport (MOLIT). Long-Term Water Resources Comprehensive Plan (2011–2020); Ministry of Land, Infrastructure and Transport (MOLIT): Seoul, Korea, 2011. [Google Scholar]
- Lee, J.Y. Water Balance Forecast of Irrigation Reservoir to Future Climate Change. Ph.D. Thesis, Chungnam National University, Daejeon, Korea, 2012. [Google Scholar]
- Cha, Y.J.; Shim, M.P.; Kim, S.K. The four major rivers restoration project. In Proceedings of the UN-Water International Conference, Zaragoza, Spain, 3–5 October 2011. [Google Scholar]
- Lee, G.J.; Park, K.W.; Jung, Y.H.; Jung, I.K.; Jung, K.W.; Jeon, J.H.; Lee, J.M.; Lim, K.J. Analysis of flood control effects of heightening of agricultural reservoir dam. J. Korean Soc. Agric. Eng. 2013, 55, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.H.; Kang, M.S.; Kim, J.H.; Song, J.H.; Jun, S.M.; Lee, S.H.; Choi, J.Y. Assessment of flood impact on downstream of reservoir group at Hwangryong River watershed. J. Korean Soc. Agric. Eng. 2012, 54, 103–111. [Google Scholar]
- Lee, T.H. The Study of Water Supply Reliability Considering the Management for Restricted Water Level of Agricultural Reservoirs during Flood Period. Master’s Thesis, Kookmin University, Seoul, Korea, 2012. [Google Scholar]
- Noh, J.K. Affecting water supply capacity followed by allocating flood control volume in heightening reservoir. KCID J. 2010, 17, 57–70. [Google Scholar]
- Lee, J.N.; Noh, J.K. Evaluation of supplying instream flow by operation rule curve for heightening irrigation reservoir. J. Agric. Sci. 2010, 37, 481–490. [Google Scholar]
- Kim, H.D.; Lee, K.Y.; Park, J.Y.; Han, G.H.; Li, H.C. Analysis of operation plan by multipurpose supply for heightened agricultural reservoir. KCID J. 2012, 19, 77–86. [Google Scholar]
- Park, J.Y.; Jung, I.K.; Lee, K.Y.; Kim, S.J. Development of operating rule curve for multipurpose water supply in heightened agricultural reservoir. J. Korean Soc. Civ. Eng. 2013, 33, 1389–1400. [Google Scholar] [CrossRef]
- Water Resources Management Information System. Available online: http://www.wamis.go.kr (accessed on 31 May 2021).
- Korea Rural Community Corporation. Available online: http://www.ekr.or.kr (accessed on 31 May 2021).
- Climate Change Information Center [CCIC]. Available online: http://www.climate.go.kr (accessed on 31 May 2021).
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Lenderink, G.; Buishand, A.; Deursen, W.V. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure, and Transport (MOLIT). Design Standard for Agricultural Production Infrastructure (Paddy Irrigation); Ministry of Land, Infrastructure, and Transport (MOLIT): Sejong, Korea, 2018. [Google Scholar]
- Food and Agriculture Organization (FAO). Irrigation Water Management: Irrigation Water Needs; Training Manual No. 3; Food and Agriculture Organization of the United Nations: Rome, Italy, 1986. [Google Scholar]
- Food and Agriculture Organization (FAO). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization (FAO): Rome, Italy, 1998. [Google Scholar]
- Ministry of Agriculture, Food and Rural Affairs (MAFRA). A Study on the Water Requirement Variation with the Farming Conditions in the Paddy Field; Ministry of Agriculture, Food and Rural Affairs (MAFRA): Gwacheon, Korea, 1997. [Google Scholar]
- K-Water Institute. Securing Stream Water by Considering Water Uses with Software Technology; K-Water Institute: Deajeon, Korea, 2003. [Google Scholar]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large RWER basin with point and nonpoint sources. J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Hashimoto, T.; Stcdinger, J.R.; Loucks, D.P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour. Res. 1982, 18, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Ashu, A.B.; Lee, S.I. Assessing climate change effects on water balance in a monsoon watershed. Water 2020, 12, 2564. [Google Scholar] [CrossRef]
- Kim, C.G.; Cho, J.; Kim, H. Assessment of climate change impacts on water resources in the Gyeongan-cheon watershed using multiple GCMs. KSCE J. Civ. Eng. 2020, 40, 119–126. [Google Scholar]
- Touch, T.; Oeurng, C.; Jiang, Y.; Mokhtar, A. Integrated modeling of water supply and demand under climate change impacts and management options in tributary basin of Tonle Sap Lake, Cambodia. Water 2020, 12, 2462. [Google Scholar] [CrossRef]
- Choi, S.; Lee, D.; Kang, S. Analysis of water supply capacity based on future various scenarios in Geum river basin. J. Korean Soc. Hazard. Mitig. 2019, 19, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Mezger, G.; del Tánago, M.G.; De Stefano, L. Environmental flows and the mitigation of hydrological alteration downstream from dams: The Spanish case. J. Hydrol. 2021, 598, 125732. [Google Scholar] [CrossRef]
- Park, J.H.; Ko, J.H.; Sung, M.H.; Jung, H.M.; Park, T.S.; Kwak, Y.C.; Choi, W.Y.; Yoo, S.H.; Yoon, K.S. A economic feasibility study on environmental ecology flow supply plan using agricultural reservoir-focused on Dongbok river. J. Korean Soc. Agric. Eng. 2019, 61, 33–47. [Google Scholar]
Calibration (1994–2001) | Validation (2001–2009) | ||||
---|---|---|---|---|---|
R2 | PE(%) | NSE | R2 | PE(%) | NSE |
0.67 | 2.4 | 0.66 | 0.76 | 0.5 | 0.67 |
Reservoir | Baseline (1981–2010) | RCP 4.5 | RCP 8.5 | ||||
---|---|---|---|---|---|---|---|
2025s | 2055s | 2085s | 2025s | 2055s | 2085s | ||
Precipitation (mm) | 1206.1 | 1093.2 | 1384.7 | 1218.2 | 1131.4 | 1172.1 | 1288.4 |
(−112.9) | (+178.6) | (+12.1) | (−74.7) | (−34.0) | (+82.3) | ||
Temperature (°C) | 14.5 | 15.9 | 16.6 | 16.9 | 15.7 | 17.3 | 19.2 |
(+1.4) | (+2.1) | (+2.4) | (+1.2) | (+2.8) | (+4.7) | ||
Evapotranspiration (mm) | 536.4 | 583.7 | 608.5 | 606.1 | 581.3 | 618.6 | 647.5 |
(+47.3) | (+72.1) | (+69.7) | (+44.9) | (+82.2) | (+111.1) | ||
Runoff (mm) | 703.2 | 577.64 | 838.65 | 685.85 | 615.59 | 613.55 | 710.84 |
(−125.6) | (+135.5) | (−17.4) | (−87.6) | (−89.7) | (+7.6) | ||
Runoff ratio (%) | 56.7 | 49.1 | 59.5 | 53.8 | 52.1 | 50.5 | 52.9 |
(−7.6) | (+2.8) | (−2.9) | (−4.6) | (−6.2) | (−3.8) |
Project | Scenario | Period | Inflow | Irrigation Water | Overflow | Water Storage | Instream Water | Water Supply Reliability (%) |
---|---|---|---|---|---|---|---|---|
(103 m3/year) | ||||||||
Before | RCP 4.5 | 2025s | 5724.2 | 4327.9 | 2402.6 | 2003.8 | - | 63.3 |
2055s | 8356.4 | 3290.5 | 5233.7 | 2815.8 | - | 96.7 | ||
2085s | 6835.3 | 3714.1 | 3643.2 | 2593.6 | - | 90.0 | ||
RCP 8.5 | 2025s | 6042.7 | 3861.9 | 2690.0 | 2290.5 | - | 83.3 | |
2055s | 6033.2 | 4195.6 | 2586.0 | 2313.6 | - | 80.0 | ||
2085s | 7022.2 | 3741.3 | 3643.5 | 2550.7 | - | 86.7 | ||
After | RCP 4.5 | 2025s | 5724.2 | 4464.6 | 1982.2 | 2443.5 | - | 66.7 (+3.4) |
2055s | 8356.4 | 3823.7 | 4649.6 | 3614.8 | 100 (+3.3) | |||
2085s | 6835.3 | 3980.7 | 3106.3 | 3293.0 | - | 90 (+0) | ||
RCP 8.5 | 2025s | 6042.7 | 4012.6 | 2284.0 | 2946.6 | - | 90 (+6.7) | |
2055s | 6033.2 | 4203.2 | 2149.4 | 3013.7 | - | 93.3 (+13.3) | ||
2085s | 7022.2 | 3998.3 | 3205.8 | 3265.2 | - | 96.7 (+10) |
Scenario | Period | Inflow | Irrigation Water | Overflow | Water Storage | Instream Water | |
---|---|---|---|---|---|---|---|
(103 m3/year) | (103 m3/year) | (103 m3/day) | |||||
RCP 4.5 | 2025s | 5706.2 | 4584.6 | 1927.5 | 2391.1 | 109.4 | 0.6 |
2055s | 8342.1 | 3934.5 | 3414.8 | 3085.8 | 1312.1 | 7.2 | |
2085s | 6821.0 | 4180.9 | 2663.0 | 3086.0 | 510.3 | 2.8 | |
RCP 8.5 | 2025s | 6017.5 | 4078.8 | 2179.3 | 2884.8 | 127.6 | 0.7 |
2055s | 6005.4 | 4220.5 | 2071.9 | 2969.1 | 91.1 | 0.5 | |
2085s | 6999.6 | 4082.4 | 2667.5 | 3048.1 | 637.8 | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Shin, H. Assessment of Future Climate Change Impact on an Agricultural Reservoir in South Korea. Water 2021, 13, 2125. https://doi.org/10.3390/w13152125
Lee J, Shin H. Assessment of Future Climate Change Impact on an Agricultural Reservoir in South Korea. Water. 2021; 13(15):2125. https://doi.org/10.3390/w13152125
Chicago/Turabian StyleLee, Jaenam, and Hyungjin Shin. 2021. "Assessment of Future Climate Change Impact on an Agricultural Reservoir in South Korea" Water 13, no. 15: 2125. https://doi.org/10.3390/w13152125
APA StyleLee, J., & Shin, H. (2021). Assessment of Future Climate Change Impact on an Agricultural Reservoir in South Korea. Water, 13(15), 2125. https://doi.org/10.3390/w13152125